K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 9 2017

Xét tam giác ABC có M và N lần lượt là trung điểm của AB và AC nên MN là đường trung bình của tam giác ABC.

Suy ra: MN // BC và

Bài tập: Diện tích hình thang | Lý thuyết và Bài tập Toán 8 có đáp án

Do đó, tứ giác MNCB là hình thang .

Vì AH = 8cm nên đường cao kẻ từ M đến BC bằng

Bài tập: Diện tích hình thang | Lý thuyết và Bài tập Toán 8 có đáp án

Diện tích hình thang MNCB là :

Bài tập: Diện tích hình thang | Lý thuyết và Bài tập Toán 8 có đáp án

Chọn đáp án A

a: Xét ΔABC có 

P là trung điểm của AC

N là trung điểm của BC

Do đó: PN là đường trung bình của ΔBAC

Suy ra: PN//AB và \(PN=\dfrac{AB}{2}\)

mà M\(\in\)AB và \(AM=\dfrac{AB}{2}\)

nên PN//AM và PN=AM

Xét tứ giác AMNP có 

PN//AM

PN=AM

Do đó: AMNP là hình bình hành

mà \(\widehat{PAM}=90^0\)

nên AMNP là hình chữ nhật

28 tháng 8 2021

bạn/anh/chị giải nốt giúp mình/em được ko ạ?

a: Xét ΔCAB có CP/CA=CN/CB

nên PN//AB và PN=AB/2

=>PN//AM và PN=AM

=>AMNP là hình bình hành

mà góc PAM=90 độ

nên AMNP là hình chữ nhật

b: \(AC=\sqrt{10^2-8^2}=6\left(cm\right)\)

AH=6*8/10=4,8cm

 

5 tháng 6 2018

Xét tam giác ABC có M và N lần lượt là trung điểm của AB và AC nên MN là đường trung bình của tam giác ABC

Suy ra: MN// BC và

Bài tập: Diện tích hình thang | Lý thuyết và Bài tập Toán 8 có đáp án

Tương tự, có NP là đường trung bình của tam giác nên: NP // AB

Xét tứ giác MNPB có MN// BC và NP // AB

Suy ra: tứ giác MNPB là bình hành.

Tam giác ABC có đường cao AH = 10cm nên đường cao ứng với cạnh đáy của hình bình hành MNPB là:

Bài tập: Diện tích hình thang | Lý thuyết và Bài tập Toán 8 có đáp án

Diện tích hình bình hành MNPB là:

Bài tập: Diện tích hình thang | Lý thuyết và Bài tập Toán 8 có đáp án

Chọn đáp án C

10 tháng 12 2020

a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được: 

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=6^2+8^2=100\)

hay \(BC=\sqrt{100}=10cm\)

Xét ΔABC có AH là đường cao ứng với cạnh BC nên 

\(S_{ABC}=\dfrac{AH\cdot BC}{2}\)(1)

Ta có: ΔABC vuông tại A(gt)

nên \(S_{ABC}=\dfrac{AB\cdot AC}{2}\)(2)

Từ (1) và (2) suy ra \(AH\cdot BC=AB\cdot AC\)

\(\Leftrightarrow AH\cdot10=6\cdot8=48\)

hay \(AH=\dfrac{48}{10}=4.8cm\)

Vậy: AH=4,8cm

b) Xét tứ giác AEHF có 

\(\widehat{EAF}=90^0\)(ΔABC vuông tại A, E∈AB, F∈AC)

\(\widehat{AEH}=90^0\)(HE⊥AB)

\(\widehat{AFH}=90^0\)(HF⊥AC)

Do đó: AEHF là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)

⇒AH=EF(Hai đường chéo của hình chữ nhật AEHF)

mà AH=4,8cm(cmt)

nên EF=4,8cm

Vậy: EF=4,8cm

 

9 tháng 4 2021

Giúp mình với mọi người 😭😭

a) Xét ΔABC vuông tại A và ΔHBA vuông tại H có

\(\widehat{ABC}\) chung

Do đó: ΔABC∼ΔHBA(g-g)

19 tháng 4 2021

A B C 8 15 H M N 8

a, Xét tam giác ABC vuông tại A, đường cao AH 

\(AB^2+AC^2=BC^2\Rightarrow BC^2=64+225=289\Rightarrow BC=17\)cm 

Xét tam giác AHC và tam giác BAC ta có : 

^AHC = ^BAC = 900

^C _ chung 

Vậy tam giác AHC ~ tam giác BAC ( g.g )

\(\Rightarrow\frac{AH}{AB}=\frac{AC}{BC}\)( tỉ số đồng dạng ) 

\(\Rightarrow AH.BC=AB.AC\Rightarrow AH=\frac{AB.AC}{BC}=\frac{8.15}{17}=\frac{120}{17}\)cm 

b, Vì MH vuông AB 

NA vuông AB 

=> MH // NA tương tự ta có : MH // AN 

=> tứ giác AMNH là hình bình hành 

mà ^HNA = 900 ; ^BAC = 900 ; ^HMA = 900

=> tứ giác AMHN là hình vuông 

19 tháng 4 2021

xin lỗi mình nhầm, => tứ giác AMNH là hình chữ nhật 

17 tháng 12 2020

a) Xét ΔABC có 

F là trung điểm của AC(gt)

M là trung điểm của BC(gt)

Do đó: FM là đường trung bình của ΔABC(Định nghĩa đường trung bình của tam giác)

⇒FM//AB và \(FM=\dfrac{AB}{2}\)(Định lí 2 về đường trung bình của tam giác)

mà E∈AB và \(AE=\dfrac{AB}{2}\)(E là trung điểm của AB)

nên FM//AE và FM=AE

Xét tứ giác AEMF có 

FM//AE(cmt)

FM=AE(cmt)

Do đó: AEMF là hình bình hành(Dấu hiệu nhận biết hình bình hành)

Hình bình hành AEMF có \(\widehat{FAE}=90^0\)(ΔABC vuông tại A)

nên AEMF là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)

 

a) Xét ΔABC có 

M là trung điểm của AB(gt)

N là trung điểm của AC(gt)

Do đó: MN là đường trung bình của ΔABC(Định nghĩa đường trung bình của tam giác)

Suy ra:MN//BC và \(MN=\dfrac{BC}{2}\)(Định lí 2 về đường trung bình của tam giác)

hay \(BC=2\cdot MN=2\cdot8=16\left(cm\right)\)

b) Xét tứ giác BMNC có MN//BC(cmt)

nên BMNC là hình thang(Định nghĩa hình thang)

Hình thang BMNC có \(\widehat{B}=\widehat{C}\)(ΔABC cân tại A)

nên BMNC là hình thang cân