Biết \(2^{10}\times\left(2^2\right)^{10}\times...........\times\left(2^{10}\right)^{10}=2^n\). Vậy n=
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có (1-1/2).(1-1/3^2).(1-1/4^2).....(1-1/10^2)
=(2^2-1/2^2).(3^2-1/3^2).....(10^2-1/10)
=(1.3/2^2).(2.4/3^2).....(9.11/10^2)
=11/20
Tìm các a,b,c \(\in\) N* a<b<c và \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\) \(\in\) Z
Bài làm:
Ta có: \(\left(x+2\right)\left(x-2\right)\left(x^2-10\right)=72\)
\(\Leftrightarrow\left(x^2-4\right)\left(x^2-10\right)=72\)
\(\Leftrightarrow x^4-14x^2+40-72=0\)
\(\Leftrightarrow x^4-14x^2-32=0\)
\(\Leftrightarrow\left(x^4-16x^2\right)+\left(2x^2-32\right)=0\)
\(\Leftrightarrow x^2\left(x^2-16\right)+2\left(x^2-16\right)=0\)
\(\Leftrightarrow\left(x^2+2\right)\left(x^2-16\right)=0\)
Mà \(x^2+2\ge2>0\left(\forall x\right)\)
\(\Rightarrow x^2-16=0\Leftrightarrow\left(x-4\right)\left(x+4\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-4=0\\x+4=0\end{cases}}\Rightarrow x=\pm4\)
( x + 2 )( x - 2 )( x2 - 10 ) = 72
<=> ( x2 - 4 )( x2 - 10 ) = 72
<=> x4 - 14x2 + 40 - 72 = 0
<=> x4 - 14x2 - 32 = 0
Đặt t = x2 ( \(t\ge0\))
Pt <=> t2 - 14t - 32 = 0
<=> t2 + 2t - 16t - 32 = 0
<=> t( t + 2 ) - 16( t + 2 ) = 0
<=> ( t - 16 )( t + 2 ) = 0
<=> \(\orbr{\begin{cases}t-16=0\\t+2=0\end{cases}}\Rightarrow\orbr{\begin{cases}t=16\\t=-2\end{cases}}\)
\(t\ge0\Rightarrow t=16\)
=> x2 = 16
=> \(x=\pm4\)
biết làm bài 1 thôi
\(\left(\frac{1}{2}+1\right)\times\left(\frac{1}{3}+1\right)\times\cdot\cdot\cdot\times\left(\frac{1}{999}+1\right)\)
= \(\frac{3}{2}\times\frac{4}{3}\times\frac{5}{4}\times\cdot\cdot\cdot\times\frac{1000}{999}\)
lượt bỏ đi còn :
\(\frac{1000}{2}=500\)
a) Nếu n chẵn thì n=2k
( 2k + 10) x ( 2k + 15) = 2k(2k+15) + 10(2k+15) = 2(k+5)(2k+15)
=> \(2\left(k+5\right)\left(2k+15\right)⋮2\)
Nếu n lẻ thì n = 2k+1
( 2k + 1 + 10) x ( 2k + 1 + 15 ) = 2(x+8)(2x+11) \(⋮\)2
Suy ra ( n + 10) x ( n +15) luôn luôn chia hết cho 2
kết quả là 550 bạn nhé
n= 110