cứu mình 1 câu thôi cũng đc
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1:
a) Ta có: c⊥b và c⊥a => a // b ( tính chất bắc cầu )
b) Ta có D2 và C1 là một cặp góc so le trong bằng nhau.
Mà a // b nên D2 = C1
Mà C1 = 125o => D2 = 125o
Ta có: D2 + D1 = 180o ( tính chất kề bù )
Mà D2 = 125o
=> D1 = 180o - 125o = 55o
mình làm bài 1 nhé.
Bài 1:
a) Ta có: a\(\perp\)AB(gt), b\(\perp\)AB(gt )
=> a // b
b) Vì a // b(cmt)
nên \(\widehat{D_2}\)= \(\widehat{C_1}\)= 1250 (2 góc so le trong)
Lại có: \(\widehat{D_2}\)+\(\widehat{D_1}\)= 1800( 2 góc kề bù)
Hay: 1250 + \(\widehat{D_1}\)= 1800
=> \(\widehat{D_1}\)= 1800 - 1250 = 550
Vậy: \(\widehat{D_1}\)= 1250; \(\widehat{D_2}\)= 550
Học tốt🤍
Tham khảo
https://thuthuat.taimienphi.vn/hay-ke-ve-mot-ki-niem-dang-nho-cua-em-doi-voi-mot-con-vat-nuoi-ma-em-yeu-thich-39628n.aspx
Hát lên một khúc tâm tình
Chỉ mong em nhớ bóng hình khi xưa
Hòa cùng khúc nhạc đêm mưa
Lệ vương khóe mắt, ướt nhòa đôi mi.
Bài 8:
\(1,P=\dfrac{x+3\sqrt{x}+2+2x-4\sqrt{x}-2-5\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\dfrac{3x-6\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\\ P=\dfrac{3\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\dfrac{3\sqrt{x}}{\sqrt{x}+2}\\ 2,P=2\Leftrightarrow2\sqrt{x}+4=3\sqrt{x}\Leftrightarrow\sqrt{x}=4\\ \Leftrightarrow x=16\left(tm\right)\)
Bài 9:
\(a,M=\dfrac{x-1}{\sqrt{x}\left(\sqrt{x}-1\right)}:\dfrac{\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\\ M=\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}\cdot\left(\sqrt{x}-1\right)\\ M=\dfrac{x-1}{\sqrt{x}}\\ b,M>0\Leftrightarrow x-1>0\left(\sqrt{x}>0\right)\\ \Leftrightarrow x>1\)
Bài 10:
\(a,A=\dfrac{\sqrt{\left(x+3\right)^2}}{x+3}=\dfrac{\left|x+3\right|}{x+3}\)
Với \(x\ge-3\Leftrightarrow A=\dfrac{x+3}{x+3}=1\)
Với \(x< -3\Leftrightarrow A=\dfrac{-\left(x+3\right)}{x+3}=-1\)
\(b,B=\dfrac{2}{x-1}\cdot\dfrac{\left|x-1\right|}{2\left|x\right|}\)
Với \(0< x< 1\Leftrightarrow B=\dfrac{2}{x-1}\cdot\dfrac{-\left(x-1\right)}{2x}=-\dfrac{1}{x}\)