Cho đoạn thẳng AB. Kẻ tia Ax bất kì. Trên tia Ax lấy các điểm C, D, E sao cho AC = CD = DE (h.97). Kẻ đoạn thẳng EB. Qua C, D kẻ các đường thẳng song song với EB. Chứng minh rằng đoạn thẳng AB bị chia ra ba phần bằng nhau.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài giải:
Ta có: EB // DD' // CC' và AE = CD = DE.
Nên theo định lí về các đường thẳng song song cách đều ta suy ra
AC' = C'D' = D'B
Vậy đoạn thẳng AB bị chia ra ba phần bằng nhau.
Xét tứ giác C'CEB có: CC'//EB (gt)
=> C'CEB là hình thang
Xét \(\Delta\)ADD' có : AC=CD (gt)
CC'=Đ' (gt)
=>AC'=C'D' (định lí 1) (1)
Xét hình thang CC'EB có: CD=DE (gt)
DD'//EB
=>C'D'=D'B(định lí 1) (2)
Từ (1) và (2) =>AC'=C'D'=D'B
Vậy đoạn thẳng AB được chia thành 3 phần bằng nhau.
Ta có AC = CD và CC’ // BE
CD = DE và DD’ // BE
=> CC’ // DD’ và CEBC’ là hình thang
=> CC’ là đường trung bình của tam giác ADD’
DD’ là đường trung bình của hình thang CEBC’
=> AC’ = CD’ và C’D’ = D’B => AC’ = CD’ = D’B
Gọi giao điểm của các đường thẳng kẻ từ C và D song song với BE cắt AB tại M và N.
Ta có: AC = CD = DE (gt)
CM // DN // BE
Theo tính chất đường thẳng song song cách đều, ta có:
AM = MN = NB
Xét tam giác ADD' , có :
. C trung điểm AD ( AC = CD ; C thuộc AD )
. CC' // DD' ( // BE )
. C' thuộc AD' ( CC' cắt AD' tại C' )
Suy ra : C' là trung điểm AD'
=> AC' = C'D' ( 1 )
Xét hình thang CC'BE ( CC' // BE ) , có :
. D' là trung điểm BC'
. DD' // BE // CC' ( cmt )
. D' thuộc BC'( DD' cắt BC' tại D' )
Suy ra : D' là trung điểm BC'
=> BD' = C'D' ( 2 )
Từ ( 1 ) và ( 2 ) , cho : AC' = C'D' = D'B
Kẻ đường thẳng At // CC’ // DD’ // BE như hình vẽ.
Ta có: AC = CD = DE
⇒ At, CC’, DD‘, BE là các đường thẳng song song cách đều
⇒ AC’ = C’D’ = D’B
hay đoạn thẳng AB bị chia ra làm 3 phần bằng nhau.