Tìm điều kiện để \(\sqrt{2x+3}+\dfrac{1}{\sqrt{2x-3}}\) có nghĩa
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) ĐKXĐ: \(\dfrac{2x+1}{x^2+1}\ge0\Leftrightarrow2x+1\ge0\Leftrightarrow x\ge-\dfrac{1}{2}\)
b) \(\sqrt[3]{-27}+\sqrt[3]{64}-\dfrac{\sqrt[3]{-128}}{\sqrt[3]{2}}=-3+4-\sqrt[3]{-64}=1+4=5\)
a: ĐKXĐ: \(x\ge-\dfrac{1}{2}\)
b: Ta có: \(\sqrt[3]{-27}+\sqrt[3]{64}-\dfrac{\sqrt[3]{-128}}{\sqrt[3]{2}}\)
\(=-3+4-\left(-4\right)\)
=-3+4+4
=5
ĐKXĐ: \(\left\{{}\begin{matrix}2x-3>0\\5-2x>=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x>\dfrac{3}{2}\\x< \dfrac{5}{2}\end{matrix}\right.\)
1) ĐKXĐ: \(x^2+2x-3\ge0\Leftrightarrow\left(x+1\right)^2\ge4\)
\(\Leftrightarrow\left[{}\begin{matrix}x+1\ge2\\x+1\le-2\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x\ge1\\x\le-3\end{matrix}\right.\)
2) ĐKXĐ: \(2x^2+5x+3\ge0\Leftrightarrow2\left(x+\dfrac{5}{4}\right)^2\ge\dfrac{1}{8}\Leftrightarrow\left(x+\dfrac{5}{4}\right)^2\ge\dfrac{1}{16}\)
\(\Leftrightarrow\left[{}\begin{matrix}x+\dfrac{5}{4}\ge\dfrac{1}{4}\\x+\dfrac{5}{4}\le-\dfrac{1}{4}\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x\ge-1\\x\le-\dfrac{3}{2}\end{matrix}\right.\)
3) ĐKXĐ: \(x-1>0\Leftrightarrow x>1\)
4) ĐKXĐ: \(x-3< 0\Leftrightarrow x< 3\)
5) ĐKXĐ: \(x+2< 0\Leftrightarrow x< -2\)
6) ĐKXĐ: \(2a-1>0\Leftrightarrow a>\dfrac{1}{2}\)
Bài 1 :
a, ĐKXĐ : \(\dfrac{2x+1}{x^2+1}\ge0\)
Mà \(x^2+1\ge1>0\)
\(\Rightarrow2x+1\ge0\)
\(\Rightarrow x\ge-\dfrac{1}{2}\)
Vậy ...
b, Ta có : \(\sqrt[3]{-27}+\sqrt[3]{64}-\sqrt[3]{-\dfrac{128}{2}}\)
\(=-3+4-\left(-4\right)=-3+4+4=5\)
Bài 2 :
\(a,=2\sqrt{5}+6\sqrt{5}+5\sqrt{5}-12\sqrt{5}\)
\(=\sqrt{5}\left(2+6+5-12\right)=\sqrt{2}\)
\(b,=\sqrt{5}+\sqrt{5}+\left|\sqrt{5}-2\right|\)
\(=2\sqrt{5}+\sqrt{5}-2=3\sqrt{5}-2\)
\(c,=\dfrac{\left(5+\sqrt{5}\right)^2+\left(5-\sqrt{5}\right)^2}{\left(5-\sqrt{5}\right)\left(5+\sqrt{5}\right)}\)
\(=\dfrac{25+10\sqrt{5}+5+25-10\sqrt{5}+5}{25-5}\)
\(=3\)
1) ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\y\ge0\\\sqrt{x}+\sqrt{y}\ne0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x>0\\y>0\end{matrix}\right.\)
2) ĐKXĐ: \(x^2+2x+2>0\Leftrightarrow\left(x^2+2x+1\right)+1>0\Leftrightarrow\left(x+1\right)^2+1>0\left(đúng\forall x\right)\)
3) ĐKXĐ: \(x^2-4x+5< 0\Leftrightarrow\left(x^2-4x+4\right)+1< 0\Leftrightarrow\left(x-2\right)^2+1< 0\left(VLý.do.\left(x-2\right)^2+1\ge1>0\right)\)
Vậy biểu thức không xác định với mọi x
Đkien
a) \(\left\{{}\begin{matrix}x\ge0;y\ge0\\\sqrt[]{x}+\sqrt{y}\ne0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x\ge0,y>0\\x>0,y\ge0\end{matrix}\right.\)
b) \(\dfrac{2}{x^2+2x+2}\ge0\Leftrightarrow x^2+2x+2>0\)
\(\Leftrightarrow x^2+2.\dfrac{1}{2}x+\dfrac{1}{4}+\dfrac{3}{4}>0\forall x\)
=> PT luôn xác định
c) \(-\dfrac{3}{x^2-4x+5}\ge0\Leftrightarrow x^2-4x+5< 0\)
\(\)=> vô nghiệm
Vậy căn thức k xác định
a)ĐK:\(-\dfrac{5}{2x+1}\ge0\) và \(2x+1\ne0\)
\(\Leftrightarrow2x+1>0\) \(\Leftrightarrow x>-\dfrac{1}{2}\)
Vậy \(x< -\dfrac{1}{2}\) thì căn thức có nghĩa
b)\(\sqrt[3]{64}+\sqrt[3]{-27}-\sqrt[3]{-4}.\sqrt[3]{2}=\sqrt[3]{4^3}+\sqrt[3]{-3^3}-\sqrt[3]{-8}\)
\(=4+\left(-3\right)-\left(-2\right)\)
\(=3\)
À không, ý a \(\Leftrightarrow2x+1< 0\Leftrightarrow x< -\dfrac{1}{2}\)
a: ĐKXĐ: x>1; x<>2
b: \(P=\left(\dfrac{\sqrt{x}+\sqrt{x-1}}{x-x+1}-\sqrt{x-1}-\sqrt{2}\right)\cdot\dfrac{2\sqrt{x}-\sqrt{x}-\sqrt{2}}{\sqrt{x}\left(\sqrt{2}-\sqrt{x}\right)}\)
\(=\left(\sqrt{x}-\sqrt{2}\right)\cdot\dfrac{\sqrt{x}-\sqrt{2}}{\sqrt{x}\left(2-\sqrt{x}\right)}=\dfrac{-\sqrt{x}+\sqrt{2}}{\sqrt{x}}\)
c: Khi x=3+2căn 2 thì
P=(-căn 2-1+căn 2)/(căn 2+1)=căn 2-1
ĐKXĐ: \(\left\{{}\begin{matrix}2x+3\ge0\\2x-3>0\end{matrix}\right.\)\(\Leftrightarrow x>\dfrac{3}{2}\)