K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 1 2019

\(\Leftrightarrow\dfrac{x+1}{2010}+1+\dfrac{x+2}{2009}+1+...+\dfrac{x+2009}{2}+1+\dfrac{x+2010}{1}+1=0\)

=>x+2011=0

hay x=-2011

\(C=\frac{\frac{1}{2008}-\frac{1}{2009}-\frac{1}{2010}}{\frac{5}{2008}-\frac{5}{2009}-\frac{5}{2010}}+\frac{\frac{2}{2007}-\frac{2}{2008}-\frac{2}{2009}}{\frac{3}{2007}-\frac{3}{2008}-\frac{3}{2009}}\)

\(=\frac{\frac{1}{2008}-\frac{1}{2009}-\frac{1}{2010}}{5.\left(\frac{1}{2008}-\frac{1}{2009}-\frac{1}{2010}\right)}+\frac{2.\left(\frac{1}{2007}-\frac{1}{2008}-\frac{1}{2009}\right)}{3.\left(\frac{1}{2007}-\frac{1}{2008}-\frac{1}{2009}\right)}\)

\(=\frac{1}{5}+\frac{2}{3}\)

\(=\frac{13}{15}\)

17 tháng 3 2018

Ta có: \(H=2^{2010}-2^{2009}-2^{2008}-...-2-1\)

\(=2^{2010}-\left(2^{2009}+2^{2008}+...+2+1\right)\)

Đặt \(A=2^{2009}+2^{2008}+...+2+1\)

\(\Rightarrow2A=2^{20010}+2^{2009}+...+2^2+2\)

\(\Rightarrow2A-A=\left(2^{20010}+2^{2009}+...+2^2+2\right)-\left(2^{2009}+2^{2008}+...+2+1\right)\)\(\Rightarrow A=\left(2^{2010}-1\right)+\left(2^{2009}-2^{2009}\right)+\left(2^{2008}-2^{2008}\right)+...+\left(2-2\right)\)\(\Rightarrow A=2001-1\)

\(\Rightarrow H=2^{2010}-\left(2^{2010}-1\right)\)

\(\Rightarrow H=2^{2010}-2^{2010}+1=1\)

Thay \(H=1\) vào biểu thức \(2010^H\)

\(\Rightarrow2010^H=2010^1=1\)

Vậy \(2010^H=1\)

27 tháng 3 2018

\(2010^1=1\) ?????

#WTF???

18 tháng 3 2017

Ta có 2H = 2.(22010 - 22009 - 22008 - ... - 2 -1)

2H = 22011 - 22010 - 22009 - ... - 22 - 2

2H - H = 22011 - 22010 - 22009 - ... - 22 - 2 - 22010 + 22009 + 22008 + ... + 2 + 1

H = 22011 - (22010 + 22010) - (22009 - 22009) - (22008 - 22008) - ... - (2 - 2) + 1

H = 1

=> 2010H = 20101 = 2010

19 tháng 3 2017

*2010/1+2009/2+...+1/2010

=(2009/2+1)+(2008/3+1)+...+(1/2010+1)+1

=2011/2+2011/3+..+2011/2010+2011/2011

=2011(1/2+1/3+1/4+...+1/2011)

=> C=2011/1=2011

22 tháng 12 2021

Mik nghĩ là C

Chúc bạn hok tốt

22 tháng 12 2021

Chọn D