Cho hình chóp S.ABCD. Hai điểm G; H lần lượt là trọng tâm tam giác SAB và SCD. Gọi O là giao điểm của AC và BD; I là giao điểm của SO và GH. Tìm giao tuyến của: (BGH) và (SAC)
A. HI
B .GI
C. KI với K là giao điểm của SA và BG
D. đáp án khác
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
IJ là đường trung bình của hình thang \(\Rightarrow\left\{{}\begin{matrix}IJ||AB\\IJ=\dfrac{AB+CD}{2}\end{matrix}\right.\)
Qua G kẻ đường thẳng song song AB lần lượt cắt SB, SA tại E và F
\(\Rightarrow\) Tứ giác IJEF là thiết diện của (GIJ) và chóp
\(EF||AB||IJ\Rightarrow IJEF\) là hình thang
Gọi M là trung điểm AB
Theo tính chất trọng tâm và định lý Talet:
\(\dfrac{EF}{AB}=\dfrac{SG}{SM}=\dfrac{2}{3}\)
Để IJEF là hình bình hành \(\Leftrightarrow IJ=EF\)
\(\Leftrightarrow\dfrac{2}{3}AB=\dfrac{AB+CD}{2}\Leftrightarrow\dfrac{1}{3}AB=CD\)
\(\Rightarrow AB=3CD\)
Đáp án A
Do M N / / A D nên giao tuyến của (SAD) và (GMN) song song với AD
Khi đó qua G dựng đường thẳng song song với AD cắt SA và SD lần lượt tại Q và P
Thiết diện là hình thang MNPQ
Lại có P Q = 2 3 A D = 2 B C
Mặt khác M N = B C + A D 2 = B C + 3 B C 2 = 2 B C
Suy ra P Q = M N do đó thiết diện là hình bình hành
Đáp án A
Do M N / / A D nên giao tuyến của S A D và G M N song song với AD. Khi đó qua G dựng đường thẳng song song với AD cắt SA và SD lần lượt tại Q và P. Thiết diện là hình thang MNPQ
Lại có P Q = 2 3 A D = 2 B C
Mặt khác M N = B C + A D 2 = B C + 3 B C 2 = 2 B C
Suy ra P Q = M N do thiết diện là hình bình hành