K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 7 2019

Chọn D

Gọi M, M' lần lượt là trung điểm của BC và B’C’. Khi đó thiết diện của lăng trụ tạo bởi mặt phẳng (AGG') là hình chữ nhật AMM'A’.

Mà  A M ’ = a . s i n 60 0 = a 3 2 ≠ A A ’

Nên AMM’A’ không thể là hình vuông.

8 tháng 4 2019

Đáp án D

Gọi E và F lần lượt là trung điểm của B’C’ và BC

Xét (AIJ) và (ABC) có: F ∈ AI ⇒ F ∈ (AIJ) ⇒ (AIJ) ∩ (ABC) =  AF

Xét ( AIJ) và (B’C’CB) có :         F là điểm chung

IJ // (B’C’CB) ( I; J lần lượt là trọng tâm tam giác ABC và A’B’C’)

⇒ giao tuyến của 2 mặt phẳng là đường thẳng a đi qua F và song song IJ

a cắt B’C’ tại E

⇒ (AIJ) ∩ (B’C’CB) = EF

Xét ( AIJ) và (A’B’C’) có:

E là điểm chung

AF // (A’B’C’)

⇒ giao tuyến 2 mặt phẳng là đường thẳng b đi qua E và song song AF

(AIJ) ∩ (A’B’C’) = A’E

Xét A’EFA có: AA’ // EF ( // IJ)

                        A’E // AF

A’EFA là hình bình hành

19 tháng 3 2017

Đáp án C

Xét tam giác A’B’C’:

Gọi N là trung điểm B’C’

J là trọng tâm A’B’C’

Xét tam giác ABC:

Gọi M là trung điểm BC

I là trọng tâm ABC

Từ (1), (2), ta có IJ // MN

Xét (AIJ) và (B’C’CB) có:

M là điểm chung

IJ // MN

⇒ giao tuyến của (AIJ) và (B’C’CB) là MN

⇒ thiết diện cần tìm là mặt phẳng (A’NMA)

Xét (A’NMA) có: A’A // MN và A’A = MN ( // = BB’)

A’NMA là hình hình hành

15 tháng 10 2017

Đáp án D

Gọi M là giao điểm của AI và BC; gọi N là giao điểm của A'J và B'C'. Suy ra M,N lần lượt là trung điểm của BC,B'C'.

Ta có M N / / B B ' A A ' / / B B ' ⇒ M N / / A A ' . Mặt khác M N = B B ' ⇒ M N = A A ' .

Từ hai dữ kiện trên suy ra AMNA' là hình bình hành. Vậy thiết diện tạo bởi mặt phẳng (ẠIJ) và hình lăng trụ là hình bình hành.

19 tháng 9 2018

Đáp án D.

QT
Quoc Tran Anh Le
Giáo viên
22 tháng 9 2023


a) Ta có ABC.A'B'C' là hình lăng trụ nên \(\Delta ABC = \Delta A'B'C'\) suy ra AG = A'G'.

Lại có (ABC) // (A'B'C'), giao tuyến của mp(AGG'A') với (ABC) và (A'B'C')  lần lượt là AG, A'G' suy ra AG // A'G'.

Như vậy , tứ giác AGG'A' có AG = A'G', AG // A'G' là hình bình hành.

b) AGG'A' là hình bình hành suy ta AA' // GG'.

Lại có AA' // CC' (do ABC.A'B'C' là hình lăng trụ).

Mặt phẳng (AGC) // (A'G'C') suy ra AGC.A'G'C' là hình lăng trụ.

25 tháng 8 2019

Chọn đáp án D

Gọi M là trung điểm của BC. Suy ra

Ta có

∆ A ' A M  vuông tại A, AH là đường cao nên

Thể tích khối lăng trụ là: V A B C . A ' B ' C ' = 3 2 a 3 16

28 tháng 2 2018


1 tháng 1 2019

Đáp án A

Khoảng cách giữa hai mặt đáy là h = AH = A’H.tan A A ' H ^ = a 3 2 . tan 30 0 = a 2

22 tháng 2 2017