Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B, S A ⊥ A B C và AH là đường cao của ∆ABC. Khẳng định nào sau đây sai?
A. S B ⊥ B C
B. A H ⊥ B C
C. S B ⊥ A C
D. A H ⊥ S C
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án B
Ta có B C ⊥ S A B C ⊥ A B ⇒ B C ⊥ S A B ⇒ A H ⊥ B C
LẠI CÓ A H ⊥ S B ⇒ A H ⊥ S B C
Các ý A, C, D đúng
Đáp án C
Tam giác ABC vuông tại B ⇒ A B ⊥ B C
Mà S A ⊥ A B C ⇒ S A ⊥ B C ⇒ B C ⊥ S A B ⇒ B C ⊥ S B
Và A H ⊥ B C mà A H ⊥ S B ⇒ A H ⊥ S B C ⇒ A H ⊥ B C A H ⊥ S C
Vậy hai đường thẳng S B , A C chéo nhau.
A là khẳng định sai.
Vì \(SB\perp\left(ABC\right)\) nên \(SB\perp BC\)
Nếu \(SA\perp BC\Rightarrow SA||SB\) hoặc SA trùng SB (đều vô lý)
Đáp án B.
Ta có S A ⊥ ( A B C ) A B ⊂ ( A B C ) B C ⊂ ( A B C ) ⇒ S A ⊥ A B và S A ⊥ B C . Vậy A, C đúng.
Do Δ A B C vuông tại B nên B C ⊥ A B .
Ta có B C ⊥ S A , S A ⊂ S A B B C ⊥ A B , A B ⊂ S A B S A ∩ A B = A ⇒ B C ⊥ S A B , S B ⊂ S A B ⇒ B C ⊥ S B
Vậy B đúng.