K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 9 2017

6 tháng 3 2017

31 tháng 3 2017

Do \(\left(SC;\left(ABCD\right)\right)=45^0;SA\perp\left(ABCD\right)\)

nên \(\left\{{}\begin{matrix}\left(SC;AC\right)=45^0\\AS\perp AC\end{matrix}\right.\)\(\Rightarrow AS=AC=\sqrt{AB^2+BC^2}=\sqrt{a^2+a^2}=a\sqrt{2}\)

\(\Rightarrow V_{S.ABCD}=\dfrac{1}{6}.\left(AD+BC\right).AB.AS\)

\(=\dfrac{1}{6}\left(2a+a\right).a.a\sqrt{2}=\dfrac{\sqrt{2}}{2}a^3\)

5 tháng 10 2019

Đáp án D

Dựng 

Dựng 

Khi đó Cx cắt AB tại E và AK tại I suy ra BI là đường trung bình của ∆AEK ( Do BD qua trung điểm O của AC)

Ta có: 

Do 

21 tháng 3 2018

20 tháng 11 2018

6 tháng 9 2019

Đáp án C

Ta có: H C = B H 2 + B C 2 = a 2  

S H = H C . tan   S C H = a 2 . tan 60 ∘ = a 6 A C = B A 2 + B C 2 = a 5 , S B = S H 2 + H B 2 = a 7  

Ta có: S B → . A C → = S H → + H B → . A C → = H B . A C . cos B A C  

⇔ S B → . A C → = H B . A C . A B A C = 2 a 2 S B . A C = a 7 . a 5 = a 2 35 ⇒ c os S B , A C = S B → . A C → S B . A C = 2 a 2 a 2 35 ⇒ S B , A C = 70 o 14 ' 28 , 22 ' '

21 tháng 11 2019

Vì SA ⊥ (ABCD) nên AC là hình chiếu vuông góc của SC lên mặt phẳng (ABCD).

2 tháng 6 2017

Đáp án A

Phương pháp: Sử dụng công thức 

Cách giải: 

Ta có 

Xét tam giác vuông SHC có 

Ta có:

Ta có:

Lại có