K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 11 2017

16 tháng 6 2023

 Gọi O là giao điểm của AC và BD. Dễ thấy \(\Delta OAB\) vuông tại O và \(OB=\dfrac{a\sqrt{3}}{2}\). Từ đó \(OA=\sqrt{AB^2-OB^2}=\sqrt{\left(\dfrac{\sqrt{3}}{2}a\right)^2-a^2}=\sqrt{\dfrac{1}{4}a^2}=\dfrac{a}{2}\) \(\Rightarrow AC=a\).

Vì \(SA\perp mp\left(ABCD\right)\) nên \(SA\perp AC\) tại A hay \(\Delta SAC\) vuông tại A. 

Lại có \(\tan SAC=\dfrac{SA}{AC}=\dfrac{a\sqrt{3}}{a}=\sqrt{3}\) nên \(\widehat{SAC}=60^o\), suy ra góc giữa SC và mp(ABCD) bằng 60o \(\Rightarrow\) Chọn A

 

16 tháng 6 2023

Chỗ \(\widehat{SAC}\) em sửa lại là \(\widehat{SCA}\) mới đúng ạ.

9 tháng 5 2017

Vì SA ⊥ (ABCD) nên AC là hình chiếu vuông góc của SC lên mặt phẳng (ABCD).

21 tháng 11 2019

Vì SA ⊥ (ABCD) nên AC là hình chiếu vuông góc của SC lên mặt phẳng (ABCD).

Chọn A

15 tháng 5 2023

Mình cảm ơn 

1 tháng 4 2016

G�c ?: G�c gi?a E, C, H G�c ?: G�c gi?a E, C, H ?o?n th?ng a: ?o?n th?ng [A, D] ?o?n th?ng b: ?o?n th?ng [A, B] ?o?n th?ng e: ?o?n th?ng [B, C] ?o?n th?ng f: ?o?n th?ng [C, D] ?o?n th?ng h: ?o?n th?ng [E, H] ?o?n th?ng i: ?o?n th?ng [E, A] ?o?n th?ng j: ?o?n th?ng [E, B] ?o?n th?ng k: ?o?n th?ng [E, D] ?o?n th?ng l: ?o?n th?ng [E, C] ?o?n th?ng m: ?o?n th?ng [H, C] A = (-1.48, 1.8) A = (-1.48, 1.8) A = (-1.48, 1.8) D = (2.3, 1.8) D = (2.3, 1.8) D = (2.3, 1.8) B = (-3.12, -0.08) B = (-3.12, -0.08) B = (-3.12, -0.08) ?i?m C: Giao ?i?m c?a c, d ?i?m C: Giao ?i?m c?a c, d ?i?m C: Giao ?i?m c?a c, d ?i?m H: (A + B) / 2 ?i?m H: (A + B) / 2 ?i?m H: (A + B) / 2 ?i?m E: ?i?m tr�n g ?i?m E: ?i?m tr�n g ?i?m E: ?i?m tr�n g

Kẻ SH vuông góc với AB. Do (SAB) vuông góc với đáy nên hình chiều của S trên (ABCD) chính là H.

Mặt khác tam giác SAB cân tại S nên H là trung điểm của AB.

\(CH=\sqrt{BH^2+BC^2}=\sqrt{\dfrac{a^2}{4}+a^2}=\dfrac{a\sqrt{5}}{2}\)

Góc giữa SC và đáy là góc SCH nên \(\widehat{SCH}=45^0\)

\(SH=CH.\tan 45^0=\dfrac{a\sqrt{5}}{2}\)

\(S_{ABCD}=a^2\)

Vậy \(V_{SABCD}=\dfrac{1}{3}.SH.S_{ABCD}=\dfrac{a^3\sqrt{5}}{6}\)

10 tháng 4 2019

bh tính kiểu gì vậy bạn

mà bạn xác định góc giữa sc và mặt đáy phải là góc SCA chứ

giải thích hộ mình với

HQ
Hà Quang Minh
Giáo viên
22 tháng 9 2023

\(SA \bot \left( {ABCD} \right) \Rightarrow \left( {SC,\left( {ABCD} \right)} \right) = \left( {SC,AC} \right) = \widehat {SCA}\)

\(ABCD\) là hình vuông \( \Rightarrow AC = \sqrt {A{B^2} + B{C^2}}  = b\sqrt 2 \)

\(\cos \widehat {SCA} = \frac{{AC}}{{SC}} = \frac{1}{2} \Rightarrow \widehat {SCA} = {60^ \circ }\)

Vậy \(\left( {SC,\left( {ABCD} \right)} \right) = {60^ \circ }\)

Chọn A.

31 tháng 1 2017

16 tháng 10 2018

17 tháng 10 2021

vậy là tam giác bhc vuông tại b phải ko mng . em cảm ơn ạ 

 

16 tháng 11 2018

Xác định được 

Vì M là trung điểm SA nên

Kẻ  và chứng minh được  nên 

Trong ∆  vuông MAD tính được 

Chọn A.