Cho hình chóp S.ABC có đáy ABC là tam giác cân tại A với AB=AC=a cạnh SA=SB=a và có S B C ⊥ A B C . Tính SC để độ dài bán kính mặt cầu ngoại tiếp hình chóp bằng a.
A. S C = a
B. S C = a 2
C. S C = a 3
D. S C = 2 a
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án B
Gọi H là trung điểm B C ⇒ A H ⊥ B C → S B C ⊥ A B C A H ⊥ S H .
Xét hai tam giác vuông SHA và BHA có H A chung S A = B A = a ⇒ Δ S H A = Δ B H A .
⇒ S H = B H = C H ⇒ Δ S B C vuông tại S ⇒ R b = B H = B C 2 .
Dễ thấy
G T = B C ⇒ R = R b 2 + R d 2 − G T 2 4 = B H 2 + R d 2 − B C 2 4 = R d = a
Xét tam giác ABC, có:
sin C = A B 2 R = 1 2 ⇒ cos C = 3 2 ⇒ B C = 2 H C = 2 A C . cos C = a 3
Trong tam giác vuông SBC, ta có S C = B C 2 − S B 2 = a 2 .
Đáp án C
Gọi H là trung điểm B C ⇒ A H ⊥ B C ⇒ A H ⊥ S H
Ta có Δ S H A = Δ B H A , Δ S B C vuông tại S ⇒ R b = B H = B C 2
R = R b 2 + R d 2 − B C 2 4 = a
Xét Δ A B C có
sin C = A B 2 R = 1 2 ⇒ cos C = 3 2 ⇒ B C = 2 H C = a 3
Ta có trong tam giác vuông S B C : S C = B C 2 − S B 2 = a 2
Chọn B.
Phương pháp:
+ Gọi H là trung điểm BC. Ta chứng minh A H ⊥ A B C và AH là trục đường tròn ngoại tiếp tam giác
SBC
+ Suy ra tâm mặt cầu ngoại tiếp chóp S. ABC là giao của AH và đường trung trực cạnh AB.
+ Chỉ ra tam giác SBC vuông tại S từ đó tính SC theo định lý Pytago.
Cách giải:
Ta có S A ⊥ A B C A C ⊂ A B C
⇒ S A ⊥ A C
S A ⊥ A B C A B ⊥ B C
⇒ S B ⊥ B C . Tâm I của mặt cầu là trung điểm của cạnh huyền SC.
Bán kính: R = SI = S C 2
S A 2 + A C 2 2 = a 2 + a 2 + a 2 2 = a 3 2
Đáp án D
Đáp án B.
Dựng tam giác đều IAB (I và C cùng phía bờ AB).
Ta có:
Qua I dựng đường thẳng song song với SA, cắt đường trung trực của SA tại O thì O là tâm mặt cầu ngoại tiếp hình chóp.
Gọi M là trung điểm của SA.
Ta có: