K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
8 tháng 5 2023

Trước hết, với \(a+b+c=1\) ta có:

\(a^2+b^2+c^2=\left(a^2+b^2+c^2\right)\left(a+b+c\right)\)

\(=\left(a^3+ab^2\right)+\left(b^3+bc^2\right)+\left(c^3+ca^2\right)+a^2b+b^2c+c^2a\)

\(\ge2a^2b+2b^2c+2c^2a+a^2b+b^2c+c^2a\)

Hay \(a^2+b^2+c^2\ge3\left(a^2b+b^2c+c^2a\right)\)

Từ đó:

\(\dfrac{a^2}{b}+\dfrac{b^2}{c}+\dfrac{c^2}{a}=\dfrac{a^4}{a^2b}+\dfrac{b^4}{b^2c}+\dfrac{c^4}{c^2a}\ge\dfrac{\left(a^2+b^2+c^2\right)^2}{a^2b+b^2c+c^2a}\)

\(\ge\dfrac{3\left(a^2b+b^2c+c^2a\right)\left(a^2+b^2+c^2\right)}{a^2b+b^2c+c^2a}=3\left(a^2+b^2+c^2\right)\) (đpcm)

Dấu "=" xảy ra khi \(a=b=c=\dfrac{1}{3}\)

8 tháng 5 2023

em cảm ơn thầy nhiều ạ !

 

 

18 tháng 2 2020

86 vì ta học lớp 9

18 tháng 2 2020

Ta có: \(a\left(b^2-1\right)\left(c^2-1\right)+b\left(a^2-1\right)\left(c^2-1\right)+c\left(a^2-1\right)\left(b^2-1\right)\)

\(=a\left(b^2c^2-b^2-c^2+1\right)+b\left(a^2c^2-a^2-c^2+1\right)\)

\(+c\left(a^2b^2-a^2-b^2+1\right)\)

\(=ab^2c^2-ab^2-ac^2+a+ba^2c^2-a^2b-bc^2+b\)

\(+ca^2b^2-a^2c-b^2c+c\)

\(=\left(ab^2c^2+ba^2c^2+ca^2b^2\right)+\left(a+b+c\right)\)

\(-\left(ab^2+ac^2+a^2b+bc^2+a^2c+b^2c\right)\)

\(=abc\left(bc+ac+ab\right)+\left(a+b+c\right)\)\(-\left[ab\left(a+b\right)+bc\left(b+c\right)+ca\left(c+a\right)\right]\)

\(=abc\left(bc+ac+ab\right)+\left(a+b+c\right)+3abc\)\(-\left[ab\left(a+b+c\right)+bc\left(a+b+c\right)+ca\left(a+b+c\right)\right]\)

\(=abc\left(bc+ac+ab\right)+\left(a+b+c\right)+3abc\)\(-\left(a+b+c\right)\left(ab+bc+ca\right)\)

\(=abc\left(bc+ac+ab\right)+abc+3abc\)\(-abc\left(ab+bc+ca\right)=4abc\)

Vậy \(a\left(b^2-1\right)\left(c^2-1\right)+b\left(a^2-1\right)\left(c^2-1\right)+c\left(a^2-1\right)\left(b^2-1\right)=4abc\)(đpcm)

2 tháng 4 2021

Ta có:

 \(a^2+b^2+c^2=ab+bc+ca\\ \Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca=0\\ \Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\\ \Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

Mà \(\left(a-b\right)^2,\left(b-c\right)^2,\left(c-a\right)^2\ge0\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)

\(\Rightarrow\left(a-b\right)^2=\left(b-c\right)^2=\left(c-a\right)^2=0\\ \Leftrightarrow a=b=c\)

Lại có: \(a+b+c=3\Rightarrow a=b=c=1\)

\(\Rightarrow M=1^{2016}+1^{2015}+1^{2020}=1+1+1=3\)

26 tháng 7 2017

Chọn C.

Theo đầu bài ta có; b(b2 - a2) = c(c2 - a2)

Hay b3 - c3 = a2(b - c)

Mà b - c ≠ 0 nên b2 + bc + c2 = a2

Theo định lí côsin thì a2 = b2 + c2 - 2bccosA

Do đó: b2 + bc + c2 = b2 + c2 - 2bccosA

Suy ra: cos A = - ½  hay góc A bằng 1200.

5 tháng 6 2021

Xin lỗi nhé!

Áp dụng BĐT ta có:
`a^2+9>=6a`
`b^2+25>=10b`
`c^2+4>=4a`
`=>a^2+b^2+c^2+38>=6a+10b+4c`
`<=>76>=6a+10b+4c(1)`
Ta có:
`6a+10b+4c`
`=6(a+b)+4(b+c)`
`=48+4(b+c)>=48+4.7=76(2)`
`(1)(2)=>6a+10b+4c=76`
`<=>a=3,b=5,c=2`

NV
5 tháng 6 2021

Do \(a^2+b^2+c^2=38\Rightarrow\left|b\right|\le\sqrt{38}< 7\)

\(\Rightarrow c\ge7-b>0\)

\(\Rightarrow c^2\ge\left(7-b\right)^2\)

Do đó:

\(38=\left(8-b\right)^2+b^2+c^2\ge\left(8-b\right)^2+b^2+\left(7-b\right)^2\)

\(\Leftrightarrow5\left(b-5\right)^2\le0\)

\(\Leftrightarrow b=5\Rightarrow a=3;c=2\)

11 tháng 6 2023

\(\)Ta có: \(a+b+c=0 \Rightarrow b+c=-a \Rightarrow (b+c)^2=(-a)^2 \Leftrightarrow b^2+c^2+2bc=a^2 \Leftrightarrow a^2-b^2-c^2=2bc\)

Tương tự: \(b^2-c^2-a^2=2ca;c^2-a^2-b^2=2ab\)

\(P=...=\dfrac{a^2}{2bc}+\dfrac{b^2}{2ca}+\dfrac{c^2}{2bc}=\dfrac{a^3+b^3+c^3}{2abc}=\dfrac{3abc}{2abc}=\dfrac{3}{2}\)

----
Bổ đề \(a+b+c=0 \Leftrightarrow a^3+b^3+c^3\)

Ở đây ta c/m chiều thuận:
Với \(a+b+c=0 \Leftrightarrow a+b=-c \Rightarrow (a+b)^3=(-c)^3 \Leftrightarrow a^3+b^3+3ab(a+b)=-c^3 \Leftrightarrow a^3+b^3+c^3=3abc(QED)\)

NV
29 tháng 4 2021

Từ giả thiết:

\(a^2=2\left(b^2+c^2\right)\ge\left(b+c\right)^2\Rightarrow\left(\dfrac{a}{b+c}\right)^2\ge1\Rightarrow\dfrac{a}{b+c}\ge1\)

\(P=\dfrac{a}{b+c}+\dfrac{b^2}{bc+ab}+\dfrac{c^2}{ac+bc}\ge\dfrac{a}{b+c}+\dfrac{\left(b+c\right)^2}{a\left(b+c\right)+2bc}\ge\dfrac{a}{b+c}+\dfrac{\left(b+c\right)^2}{a\left(b+c\right)+\dfrac{1}{2}\left(b+c\right)^2}\)

\(P\ge\dfrac{a}{b+c}+\dfrac{1}{\dfrac{a}{b+c}+\dfrac{1}{2}}\)

Đặt \(\dfrac{a}{b+c}=x\ge1\)

\(\Rightarrow P\ge x+\dfrac{1}{x+\dfrac{1}{2}}=\dfrac{4}{9}\left(x+\dfrac{1}{2}\right)+\dfrac{1}{x+\dfrac{1}{2}}+\dfrac{5}{9}x-\dfrac{2}{9}\)

\(P\ge2\sqrt{\dfrac{4}{9}\left(x+\dfrac{1}{2}\right).\dfrac{1}{\left(x+\dfrac{1}{2}\right)}}+\dfrac{5}{9}.1-\dfrac{2}{9}=\dfrac{5}{3}\)

\(P_{min}=\dfrac{5}{3}\) khi \(x=1\) hay \(a=2b=2c\)

15 tháng 4 2023

Tại sao dòng 6 lại \(+-\) 2/9 vậy ạ?