Cho \(\frac{a}{2b+c}=\frac{b}{2c+a}=\frac{c}{2a+b}\)(a,b,c>0) . Tính giá trị mỗi tỉ số
Ps : 2 like cho bn nào giải đầy đủ và chi tiết nhất
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{a}{2b+c}=\frac{b}{2c+a}=\frac{c}{2c+b}=\frac{a+b+c}{2b+c+2c+a+2c+b}\)\(=\frac{a+b+c}{3a+3b+3c}=\frac{a+b+c}{3\left(a+b+c\right)}=\frac{1}{3}\)
Vậy ...
P = \(\frac{a^2c}{a^2c+c^2b+b^2a+}+\frac{b^2a}{b^2a+a^2c+c^2b}+\frac{c^2b}{c^2b+b^2a+a^2c}\)
P = \(\frac{a^2c+b^2a+c^2b}{a^2c+c^2b+b^2a}=1\)
\(P=\frac{\frac{a}{b}}{\frac{a}{b}+\frac{c}{a}+\frac{b}{c}}+\frac{\frac{b}{c}}{\frac{b}{c}+\frac{a}{b}+\frac{c}{a}}+\frac{\frac{c}{a}}{\frac{c}{a}+\frac{b}{c}+\frac{a}{b}}=\frac{\frac{a}{b}+\frac{b}{c}+\frac{c}{a}}{\frac{a}{b}+\frac{b}{c}+\frac{c}{a}}=1\)
cho \(\frac{a}{2b+c}\)=\(\frac{b}{2c+a}\)= \(\frac{c}{2a+b}\) (a,b,c >0), Tính giá trị của mỗi tỉ số
Nửa chu vi hình chữ nhật là:
32:2=16(cm)
Gọi chiều dài là a
Chiều rộng là b
Theo đề ta có: \(\frac{b}{a}=0,6\)
hay \(\frac{b}{a}=\frac{6}{10}\)
\(\Rightarrow\frac{b}{6}=\frac{a}{10}\)
\(\frac{b+a}{6+10}=\frac{16}{16}\)\(\Rightarrow\)\(\frac{b}{6}=\frac{a}{10}=1\)
b= 1.6=6
a=1.10=10
Chiều dài là 10 cm
Chiều rộng là 6 cm
Áp dụng tính chất dãy tỉ số bằng nhau ta có : a/2b+c = b/2c+a = c/2a+b = a+b+b/2b+c+2c+a+2a+b = 1/3
=> a/2b+c + b/2c+a + c/2a+b = 1/3 + 1/3 + 1/3 = 1
k mk nha
Có: \(\frac{3a+b+2c}{2a+c}=\frac{a+3b+c}{2b}=\frac{a+2b+2c}{b+c}\)
\(\Rightarrow\frac{a+b+c+2a+c}{2a+c}=\frac{a+b+c+2b}{2b}=\frac{a+b+c+b+c}{b+c}\)
\(\Rightarrow\frac{a+b+c}{2a+c}+1=\frac{a+b+c}{2b}+1=\frac{a+b+c}{b+c}+1\)
\(\Rightarrow\frac{a+b+c}{2a+c}=\frac{a+b+c}{2b}=\frac{a+b+c}{b+c}\)
\(\Rightarrow2a+c=2b=b+c\)
\(\Rightarrow\hept{\begin{cases}c=b\\a=\frac{1}{2}b\end{cases}}\)
Thay vào biểu thức trên , ta được:
\(P=\)\(\frac{\left(\frac{1}{2}b+b\right)\left(b+b\right)\left(b+\frac{1}{2}b\right)}{\frac{1}{2}b.b.b}=9\)
Vậy \(P=9\)
\(\frac{a}{2b+c}=\frac{b}{2c+a}=\frac{c}{2a+b}=\frac{a+b+c}{2b+c+2c+a+2a+b}=\frac{a+b+c}{3a+3b+3c}=\frac{1}{3\left(a+b+c\right)}=\frac{1}{3}\)