1 số tự nhiên chia cho 2, cho 3, 4,5,6 đều dư 1 và chia hết cho 7. Tìm dạng chung của số tự nhiên đó
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số cần tìm la a
Theo bài ra ta có
a chia 4 ; 5 ; 6 dư 1
=> a- 1 chia hết cho 4 ; 5 ; 6
=> a - 1 là B C( 4 ; 5 ; 6 )
BCNN(4;5;6)= 60
=> BC(4;5;6) = ( 0 ; 60 ; 120 ; 180 ; 240 ; 300 ; 360 ; 420 ; .... )
=> a- 1 thuộc ( 0 ; 60 ; 120 ; 180 ; 240 ; 360 ; 420;... )
=> a thuộc ( 1 ; 61 ; 121 ; 181 ; 241 ; 361 ; 421;.... )
MÀ a < 400 và a chia hết cho 7 => không có a thỏa mãn
gọi số cần tìm là a.theo bài ra ta có:a chia 3;4;5;6 dư 1=>a-1 chia hết cho 3;4;5;6=>a-1 chia hết cho 60=>a-1 thuộc {0;60;120;180;240;300;...}=>a thuộc {1;61;121;181;241;301;...}vì a chia hết cho 7=>a=301vậy a=301
Vậy số tự nhiên nhỏ nhất chia hết cho 7 là 301
b, gọi số tổng quát là n, ta có:
n - 1 chia hết cho 60
=> n - 301 chia hết cho 60
Mà n chia hết cho 7
=> n - 301 chia hết cho 7
=> n - 1 chia hết cho 60.7 = 420
=> n - 1 = 420k
=> n = 420k +1 ( k thuộc N )
Vừa tuần trước học xong K cho tớ nha
a chia cho 4, 5, 6 dư 1 nên (a - 1) chia hết cho 4, 5, 6
=> (a - 1) là bội chung của (4,5,6)
=> a - 1 = 60n => a = 60n+1 với 1 ≤ n < (400-1)/60 = 6,65
mặt khác a chia hết cho 7 => a = 7m
Vậy 7m = 60n + 1
có 1 chia 7 dư 1
=> 60n chia 7 dư 6
mà 60 chia 7 dư 4
=> n chia 7 dư 5
mà n chỉ lấy từ 1 đến 6 => n = 5
a = 60.5 + 1 = 301
Gọi số đó là a.
Ta có : a chia 4, 5, 6 dư 1
\(\Rightarrow\) a - 1 chia hết cho 4, 5, 6
\(\Rightarrow\) a - 1 chia hết cho BCNN(4, 5, 6)
\(\Rightarrow\) a - 1 chia hết cho 60.
Thử hết các bội không vượt quá 400 của 60, ta thấy chỉ có a - 1 = 300 là thỏa mãn a = 301 chia hết cho 7.
Vậy a = 301.
a chia cho 4, 5, 6 dư 1 nên (a - 1) chia hết cho 4, 5, 6
=> (a - 1) là bội chung của (4,5,6)
=> a - 1 = 60n => a = 60n+1 với 1 ≤ n < (400-1)/60 = 6,65
mặt khác a chia hết cho 7 => a = 7m
Vậy 7m = 60n + 1
có 1 chia 7 dư 1
=> 60n chia 7 dư 6
mà 60 chia 7 dư 4
=> n chia 7 dư 5
mà n chỉ lấy từ 1 đến 6 => n = 5
a = 60.5 + 1 = 301