Thực hiện các phép chia:
b ) ( 2 x 3 – 9 x 2 + 10 x – 3 ) : ( x – 3 )
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left[\left(3-x\right)^5-7\left(x-3\right)^4-4\left(x-3\right)^2\right]:\left(x^2-6x+9\right)=\left[\left(3-x\right)^5-7\left(3-x\right)^4-4\left(3-x\right)^2\right]:\left(3-x\right)^2=\left(3-x\right)^2\left[\left(3-x\right)^3-7\left(3-x\right)^2-4\right]:\left(3-x\right)^2=\left(3-x\right)^3-7\left(3-x\right)^2-4=27-27x+9x^2-x^3-63+42x-7x^2-4=-x^3+2x^2+15x-40\)
\(\dfrac{\left(3-x\right)^5-7\left(x-3\right)^4-4\left(x-3\right)^2}{x^2-6x+9}\)
\(=\dfrac{-\left(x-3\right)^5-7\left(x-3\right)^4-4\left(x-3\right)^2}{\left(x-3\right)^2}\)
\(=-\left(x-3\right)^3-7\left(x-3\right)^2-4\)
a: \(=\dfrac{5\left(x+2\right)}{10xy^2}\cdot\dfrac{12x}{x+2}=\dfrac{60x}{10xy^2}=\dfrac{6}{y^2}\)
b: \(=\dfrac{x-4}{3x-1}\cdot\dfrac{3\left(3x-1\right)}{\left(x-4\right)\left(x+4\right)}=\dfrac{3}{x+4}\)
c: \(=\dfrac{2\left(2x+1\right)}{\left(x+4\right)^2}\cdot\dfrac{\left(x+4\right)}{3\left(x+3\right)}=\dfrac{2\left(2x+1\right)}{3\left(x+3\right)\left(x+4\right)}\)
d: \(=\dfrac{5\left(x-1\right)}{3\left(x+1\right)}\cdot\dfrac{x+1}{x-1}=\dfrac{5}{3}\)
Tham khảo:
a) \((45{x^5} - 5{x^4} + 10{x^2}):5{x^2}\)\( = 9{x^3} - {x^2} + 2\)
b) \((9{t^2} - 3{t^4} + 27{t^5}):3t = (27{t^5} - 3{t^4} + 9{t^2}):3t\\=(27t^5):(3t) - (3t^4):(3t)+(9t^2):(3t) = 9{t^4} - {t^3}+3t\)
a, \(\left(x^2-9\right)^2-\left(x-3\right)\left(x+3\right)\left(x^2+9\right)=\left(x^2-9\right)^2-\left(x^2-9\right)\left(x^2+9\right)\)
\(=x^4-18x^2+81-x^4+81=-18x^2+162\)
b, \(\left(x^2+x-3\right)\left(x^2-x+3\right)=\left[x^4-\left(x-3\right)^2\right]\)
\(=x^4-x^2+6x-9\)
\(a,\dfrac{x^2-9}{x-2}:\dfrac{x-3}{x}\\ =\dfrac{\left(x-3\right)\left(x+3\right)}{x-2}\times\dfrac{x}{x-3}\\ =\dfrac{x\left(x+3\right)}{\left(x-2\right)}\)
\(b,\dfrac{x}{z^2}.\dfrac{xz}{y^3}:\dfrac{x^3}{yz}\\ =\dfrac{x}{z^2}.\dfrac{xz}{y^3}.\dfrac{yz}{x^3}=\dfrac{x^2yz^2}{z^2y^3x^3}=\dfrac{1}{xy^2}\)
\(c,\dfrac{2}{x}-\dfrac{2}{x}:\dfrac{1}{x}+\dfrac{4}{x}.\dfrac{x^2}{2}\\ =\dfrac{2}{x}-\dfrac{2}{x}\times\dfrac{x}{1}+\dfrac{4x^2}{2x}\\ =\dfrac{2}{x}-\dfrac{2}{1}+2x\\ =\dfrac{2-2x+2x^2}{x}\)
a) \(\dfrac{x^2-9}{x-2}:\dfrac{x-3}{x}\)
\(=\dfrac{\left(x+3\right)\left(x-3\right)}{x-2}\cdot\dfrac{x}{x-3}\)
\(=\dfrac{x\left(x+3\right)}{x-2}\)
b) \(\dfrac{x}{z^2}\cdot\dfrac{xz}{y^3}:\dfrac{x^3}{yz}\)
\(=\dfrac{x}{z^2}\cdot\dfrac{xz}{y^3}\cdot\dfrac{yz}{x^3}\)
\(=\dfrac{1}{xy^2}\)
c) \(\dfrac{2}{x}-\dfrac{2}{x}:\dfrac{1}{x}+\dfrac{4}{x}\cdot\dfrac{x^2}{2}\)
\(=\dfrac{2}{x}-\dfrac{2}{x}\cdot x+\dfrac{4}{x}\cdot\dfrac{x^2}{2}\)
\(=\dfrac{2}{x}\cdot\left(1-x+2\right)\)
\(=\dfrac{2}{x}\cdot\left(3-x\right)\)
\(=\dfrac{6}{x}-2\)
\(=\left(3x^4-3x^3+x^3-x^2+8x^2-8x+9x-9\right):\left(x-1\right)\\ =\left(x-1\right)\left(3x^3+x^2+8x+9\right):\left(x-1\right)\\ =3x^3+x^2+8x+9\)
b: \(=\dfrac{7x-42-x^2+36}{x\left(x-6\right)}=\dfrac{-x^2+7x-6}{x\left(x-6\right)}=\dfrac{-x+1}{x}\)
\(\dfrac{x+3}{\left(x-3\right)\left(x+3\right)}-\dfrac{3}{x\left(x-3\right)}=\dfrac{x\left(x+3\right)-3\left(x+3\right)}{x\left(x-3\right)\left(x+3\right)}=\dfrac{x^2+3x-3x-9}{x\left(x-3\right)\left(x+3\right)}=\dfrac{\left(x-3\right)\left(x+3\right)}{x\left(x-3\right)\left(x+3\right)}=\dfrac{1}{x}\)
1.
=3/5x(3/7+4/7)+2/5x(13/9-4/9)
=3/5x1+2/5x1
=3/5+2/5
=1
2.Xx(3/4+4/5)=7/10
Xx31/20=7/10
X =7/10:31/20
X =14/31
\(\frac{3}{5}\cdot\frac{3}{7}+\frac{3}{5}\cdot\frac{4}{7}+\frac{2}{5}\cdot\frac{13}{9}-\frac{2}{5}\cdot\frac{4}{9}\)
\(=\frac{3}{5}\cdot\left(\frac{3}{7}+\frac{4}{7}\right)+\frac{2}{5}\cdot\left(\frac{13}{9}-\frac{4}{9}\right)\)
\(=\frac{3}{5}\cdot1+\frac{2}{5}\cdot1\)\(=\frac{3}{5}+\frac{2}{5}=1\)
_________________________________________
\(\frac{3}{4}\cdot x+\frac{4}{5}\cdot x=\frac{7}{10}\)
\(\left(\frac{3}{4}+\frac{4}{5}\right)\cdot x=\frac{7}{10}\)
\(\frac{31}{20}\cdot x=\frac{7}{10}\)
\(x=\frac{7}{10}:\frac{31}{20}\)
\(x=\frac{14}{31}\)
Vậy (2x2 – 9x2 + 10x – 3) : (x – 3) = (2x2 – 3x + 1)