K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 5 2018

Cho phương trình bậc hai a x 2 + b x + c = 0   ( a ≠ 0 ) . Nếu x 1 ; x 2 là hai nghiệm của phương trình thì  x 1 + x 2 = − b a x 1 . x 2 = c a

Đáp án: A

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

Mệnh đề \(P \Rightarrow Q\): “Nếu phương trình bậc hai \(a{x^2} + bx + c = 0\) có hai nghiệm phân biệt thì phương trình bậc hai \(a{x^2} + bx + c = 0\) có biệt thức \(\Delta  = {b^2} - 4ac\;\, > 0\).”

Mệnh đề \(Q \Rightarrow P\): “Nếu phương trình bậc hai \(a{x^2} + bx + c = 0\) có biệt thức \(\Delta  = {b^2} - 4ac\;\, > 0\) thì phương trình bậc hai \(a{x^2} + bx + c = 0\) có hai nghiệm phân biệt.”

31 tháng 3 2019

Nghiệm chung x (nếu có) của hai phương trình là nghiệm của hệ:

Giải bài 15 trang 133 SGK Toán 9 Tập 2 | Giải toán lớp 9

Lấy (1) trừ (2) vế trừ vế ta được:

ax + 1+ x+ a = 0

⇔ ( ax+ x) + (1+ a) =0

⇔ (a+ 1).x+ (1+ a) = 0

⇔ ( a+ 1) . (x+1)=0

⇔ a = - 1 hoặc x= -1

* Với a = -1 thay vào (2) ta được:   x 2 -   x   +   1   =   0  phương trình này vô nghiệm

vì    ∆ =   ( - 1 ) 2   –   4 . 1 . 1 =   -   3   <   0

nên loại a = -1.

*Thay x = -1 vào (2) suy ra a = 2.

Vậy với a = 2 thì phương trình có nghiệm chung là x = -1

Vậy chọn câu C.

21 tháng 12 2019

Nghiệm chung x (nếu có) của hai phương trình là nghiệm của hệ:

Giải bài 15 trang 133 SGK Toán 9 Tập 2 | Giải toán lớp 9

Lấy (1) trừ (2) vế trừ vế ta được:

ax + 1+ x+ a = 0

⇔ ( ax+ x) + (1+ a) =0

⇔ (a+ 1).x+ (1+ a) = 0

⇔ ( a+ 1) . (x+1)=0

⇔ a = - 1 hoặc x= -1

* Với a = -1 thay vào (2) ta được: x 2 -   x   +   1   =   0  phương trình này vô nghiệm

vì  ∆ =   ( - 1 ) 2   –   4 . 1 . 1 =   -   3   <   0

nên loại a = -1.

*Thay x = -1 vào (2) suy ra a = 2.

Vậy với a = 2 thì phương trình có nghiệm chung là x = -1

Vậy chọn câu C.

23 tháng 3 2017

Đáp án A

Cho phương trình bậc hai a x 2   + bx + c (a  ≠  0).

Nếu  x 1 ;   x 2 là hai nghiệm của phương trình thì:

Toán lớp 9 | Lý thuyết - Bài tập Toán 9 có đáp án

1 tháng 2 2017

Đáp án A

Cho phương trình bậc hai a x 2 + b x + c   ( a ≠ 0 ) .

Nếu x 1 ;   x 2  là hai nghiệm của phương trình thì:

Toán lớp 9 | Lý thuyết - Bài tập Toán 9 có đáp án

11 tháng 4 2017

a. Đúng

Vì x 2  + 1 > 0 với mọi x nên phương trình đã cho tương đương với phương trình:

4x – 8 + (4 – 2x) = 0 ⇔ 2x – 4 = 0 ⇔ 2x = 4 ⇔ x = 2

b. Đúng

Vì  x 2  – x + 1 = x - 1 / 2 2  + 3/4 > 0 với mọi x nên phương trình đã cho tương đương với phương trình:

(x + 2)(2x – 1) – x – 2 = 0 ⇔ (x + 2)(2x – 2) = 0

⇔ x + 2 = 0 hoặc 2x – 2 = 0 ⇔ x = - 2 hoặc x = 1

c. Sai

Vì điều kiện xác định của phương trình là x + 1 ≠ 0 ⇔ x ≠ - 1

Do vậy phương trình Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8 không thể có nghiệm x = - 1

d. Sai

Vì điều kiện xác định của phương trình là x ≠ 0

Do vậy x = 0 không phải là nghiệm của phương trình Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

NV
21 tháng 1 2024

a.

\(f\left(x\right)=0\) có nghiệm \(x=1\Rightarrow f\left(1\right)=0\)

\(\Rightarrow1-2\left(m-2\right)+m+10=0\)

\(\Rightarrow m=15\)

Khi đó nghiệm còn lại là: \(x_2=\dfrac{m+10}{x_1}=\dfrac{25}{1}=25\)

b.

Pt có nghiệm kép khi: \(\Delta'=\left(m-2\right)^2-\left(m+10\right)=0\)

\(\Rightarrow m^2-5m-6=0\Rightarrow\left[{}\begin{matrix}m=-1\\m=6\end{matrix}\right.\)

Với \(m=-1\) nghiệm kép là: \(x=-\dfrac{b}{2a}=m-2=-3\)

Với \(m=6\) nghiệm kép là: \(x=-\dfrac{b}{2a}=m-2=4\)

c.

Pt có 2 nghiệm âm pb khi:

\(\left\{{}\begin{matrix}\Delta'=m^2-5m-6>0\\x_1+x_2=2\left(m-2\right)< 0\\x_1x_2=m+10>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}m< -1\\m>6\end{matrix}\right.\\m< 2\\m>-10\end{matrix}\right.\) \(\Rightarrow-10< m< -1\)

d.

\(f\left(x\right)< 0;\forall x\in R\Rightarrow\left\{{}\begin{matrix}a=1< 0\left(\text{vô lý}\right)\\\Delta'=m^2-5m-6< 0\end{matrix}\right.\) 

Không tồn tại m thỏa mãn

21 tháng 1 2024

e cảm ơn ạ

1 tháng 6 2017

a) Đ

b) S

c) S

d) Đ

17 tháng 1 2018

Đáp án đúng : C