K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 1 2017

TH1: m = 0 ta có phương trình 4x + 5 = 0 ⇔ x = − 5 4

TH2: m ≠ 0

Ta có ∆ = [−2(m – 2)]2 – 4m (m + 5) = − 36m + 16

Để phương trình đã cho vô nghiệm thì:

m ≠ 0 − 36 m + 16 < 0 ⇔ m ≠ 0 36 m > 16

⇔ m ≠ 0 m > 8 19 ⇒ m > 8 19

Vậy với m > 8 19 thì phương trình đã cho vô nghiệm

Đáp án cần chọn là: A

13 tháng 11 2017

Phương trình (m + 2)x2 + 2x + m = 0 (a = m + 2; b = 2; c = m)

TH1: m + 2 = 0m = −2 ta có phương trình 2x – 2 = 0 x = 1

TH2: m + 2 ≠ 0 ⇔ m−2

Ta có ∆ = 22 – 4(m + 2). m = −4m2 – 8m + 4

Để phương trình đã cho vô nghiệm thì:

m ≠ 2 − 4 m 2 − 8 m + 4 < 0 ⇔ m ≠ 2 2 − m + 1 2 < 0

⇔ m ≠ 2 m + 1 2 > 2 ⇔ m ≠ 2 m + 1 > 2 m + 1 < − 2

Đáp án cần chọn là: B

29 tháng 3 2022

a) 2x2 - 6x -1 = 0 

delta phẩy = 9 + 2 = 11 = (\(\sqrt{11}\))2 

x1 = \(\dfrac{3+\sqrt{11}}{2}\)

x2 = \(\dfrac{3-\sqrt{11}}{2}\)

b) xét delta phẩy có :

9 - 2.(2m-5) = 19 - 4m 

+) điều kiện để phương trình vô nghiệm là 19 - 4m < 0 => m > \(\dfrac{19}{4}\)

+) điều kiện để phương trình có nghiệm kép là 19 - 4m = 0 => m = \(\dfrac{19}{4}\)

+) điều kiện để phương trình có 2 nghiệm phân biệt là 19 - 4m > 0 

=> m < \(\dfrac{19}{4}\)

20 tháng 4 2020

ĐK: \(\hept{\begin{cases}x\ne2\\x\ne-m-1\end{cases}}\)

\(\frac{x+2}{x-2}+\frac{m-x}{x+m+1}=0\)(1) 

=> ( x + 2 ) ( x + m + 1 ) + ( m - x ) ( x - 2 ) = 0 

<=> (m + 3 ) x + 2 ( m + 1 ) + ( m + 2 ) x - 2m = 0 

< => ( 2m + 5 ) x + 2 = 0  (2)

TH1: 2m + 5 = 0 <=> m = -5/2 

Khi đó (2) trở thành:  0x + 2 = 0 => phương trình vô nghiệm với mọi x 

=> m = -5/2 thỏa mãn

TH2: 2m + 5 \(\ne\)0 <=> m \(\ne\)-5/2 

khi đó: (2) có nghiệm: \(x=-\frac{2}{2m+5}\)

( 1) vô nghiệm <=> (2) có nghiệm x = 2 hoặc x = -m -1

<=> \(\orbr{\begin{cases}-\frac{2}{2m+5}=-m-1\\-\frac{2}{2m+5}=2\end{cases}}\)

Giải: \(-\frac{2}{2m+5}=-m-1\) 

<=> 2 = ( m + 1 ) ( 2m + 5 ) 

<=> 2m^2 +7m +3= 0 

<=> m = -1/2 hoặc m = -3  (tm m khác -5/2)

Giải: \(-\frac{2}{2m+5}=2\)

<=> 2m + 5 = - 1 <=> m = - 3 (tm)

Vậy m = -5/2; m = -3; m = -1/2 thì phương trình vô nghiệm.

26 tháng 4 2017

Phương trình x2 + (1 – m)x − 3 = 0 (a = 1; b = 1− m; c = −3)

⇒ ∆ = (1 – m)2 – 4.1.(−3) = (1 – m)2 + 12  12 > 0; ∀ m

Nên phương trình đã cho luôn có hai nghiệm phân biệt

Hay không có giá trị nào của m để phương trình vô nghiệm

Đáp án cần chọn là: B

NV
22 tháng 5 2021

\(\Delta'=m^2-\left(m^2-m+2\right)=m-2\)

Pt đã cho có 2 nghiệm khi \(\Delta'\ge0\Leftrightarrow m\ge2\)

b.

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=m^2-m+2\end{matrix}\right.\)

\(A=x_1x_2-2\left(x_1+x_2\right)\)

\(A=m^2-m+2-4m\)

\(A=m^2-5m+2=\left(m-\dfrac{5}{2}\right)^2-\dfrac{17}{4}\ge-\dfrac{17}{4}\)

\(A_{min}=-\dfrac{17}{4}\) khi \(m=\dfrac{5}{2}\)

22 tháng 12 2021

a: Để phương trình có hai nghiệm trái dấu thì m+2<0

hay m<-2

30 tháng 6 2020

phương trình vô nghiệm: 

\(\Delta'< 0\Leftrightarrow\left(m+1\right)^2-4< 0\Leftrightarrow-2< m-1< 2\Leftrightarrow-1< m< 3\)