Hệ phương trình x 3 - 8 x = y 3 + 2 y x 2 - 3 = 3 y 2 + 1 có bao nhiêu nghiệm?
A. 3
B. 5
C. 4
D. 6
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài toán này có hai cách giải:
Cách 1: Thu gọn từng phương trình ta sẽ thu được phương trình bậc nhất hai ẩn x và y.
Cách 2: Đặt ẩn phụ.
Cách 1:
(hệ số của y bằng nhau nên ta trừ từng vế hai phương trình)
Vậy hệ phương trình có nghiệm duy nhất
(Nhân hai vế pt 1 với 2; pt 2 với 3 để hệ số của y đối nhau)
(Hệ số của y đối nhau nên ta cộng từng vế của hai pt)
Vậy hệ phương trình có nghiệm duy nhất (1; -1).
Cách 2:
a) Đặt x + y = u và x – y = v (*)
Khi đó hệ phương trình trở thành
Thay u = -7 và v = 6 vào (*) ta được hệ phương trình:
Vậy hệ phương trình có nghiệm
b) Đặt x – 2 = u và y + 1 = v.
Khi đó hệ phương trình trở thành :
+ u = -1 ⇒ x – 2 = -1 ⇒ x = 1.
+ v = 0 ⇒ y + 1 = 0 ⇒ y = -1.
Vậy hệ phương trình có nghiệm (1; -1).
a/ \(\left(x^2+2x+8\right)\left(x^2+13x+8\right)=0\)
b/ \(\hept{\begin{cases}x^3-y^3=3\left(x-y\right)\left(1\right)\\x+y=-1\left(2\right)\end{cases}}\)
\(\left(2\right)\Leftrightarrow\left(x-y\right)\left(x^2+xy+y^2-3\right)=0\)
Tơi đây đơn giản rồi nhe
<=> xy+5x+3y+15=xy+8x+y+8 <=> 3x-2y=7 <=> 9x-6y=21 <=> x=3 <=> x=3
10xy+14x-15y-21=10xy+10x-12y-12 4x-3y=9 8x-6y=18 8.3-6y=18 y=1
c) \(\left\{{}\begin{matrix}2\left(x-2\right)+3\left(1+y\right)=2\\3\left(x-2\right)-2\left(1+y\right)=-3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}6\left(x-2\right)+9\left(1+y\right)=6\\6\left(x-2\right)-4\left(1+y\right)=-6\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}13\left(1+y\right)=12\\2\left(x-2\right)+3\left(1+y\right)=2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{21}{13}\\y=-\dfrac{1}{13}\end{matrix}\right.\)
d) \(\left\{{}\begin{matrix}\left(x-5\right)\left(y-2\right)=\left(x+2\right)\left(y-1\right)\\\left(x-4\right)\left(y+7\right)=\left(x-3\right)\left(y+4\right)\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}xy-2x-5y+10=xy-x+2y-2\\xy+7x-4y-28=xy+4x-3y-12\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-x-7y=-12\\3x-y=16\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}-x-7y=-12\\21x-7y=112\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}22x=124\\3x-y=16\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{62}{11}\\y=\dfrac{10}{11}\end{matrix}\right.\)
1. \(2x^2-3x-5=0\)
\(\Leftrightarrow\left(2x-5\right)\left(x+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}2x-5=0\\x+1=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=2,5\\x=-1\end{cases}}\)
Vậy tập ngiệm của phương trình là \(S=\left\{2,5;-1\right\}\)
2x2-3x-5=0
2x2+2x-5x-5=0
2x(x+1)+5(x+1)=0
(x+1)(2x+5)=0
TH1 x+1=0 <=>x=-1
TH2 2x+5=0<=>2x=-5<=>x=-5/2
2. ta có:
2(x-2y)-(2x+y)=-1.2-8
2x-4y-2x-y=-2-8
-5y=-10
y=2
thay vào
x-2y=-1 ( với y=2)
<=> x-2.2=-1
x-4=-1
x=3
Ta có hệ : \(\hept{\begin{cases}x^2+y^2=\frac{1}{2}\\\left(x+y\right)^3+\left(x-y\right)^3=1\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}2x^2+2y^2=1\\2x^3+6xy^2=1\end{cases}\Leftrightarrow}\hept{\begin{cases}2y^2=1-2x^2\left(1\right)\\2x^3+6xy^2=1\left(2\right)\end{cases}}\)
Dễ thấy \(y=0\) không là nghiệm nên thế (1) và (2) ta có : \(2x^3+3.x.\left(1-2x^2\right)=1\)
\(\Leftrightarrow4x^3-3x+1=0\)
\(\Leftrightarrow\left(x+1\right)\left(2x-1\right)^2=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=-1\\x=\frac{1}{2}\end{cases}}\)
+) Với \(x=-1\) thì ta có : \(\hept{\begin{cases}\left(-1\right)^2+y^2=\frac{1}{2}\\\left(-1+y\right)^3+\left(-1-y\right)^3=1\end{cases}}\) ( Vô nghiệm )
+) Với \(x=\frac{1}{2}\) thì ta có : \(\left(\frac{1}{2}\right)^2+y^2=\frac{1}{2}\Leftrightarrow y=\pm\frac{1}{2}\). Thỏa mãn hệ phương trình.
Vậy hệ pt có 2 nghiệm \(\left(x,y\right)=\left\{\left(\frac{1}{2};-\frac{1}{2}\right),\left(\frac{1}{2},\frac{1}{2}\right)\right\}\)
Đặt \(\sqrt{x+3}=a\); \(\sqrt{y+1}=b\) (a,b \(\ge0\))
\(\Rightarrow\left\{{}\begin{matrix}a-2b=2\\2a+b=4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2a-4b=4\\2a+b=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}5b=0\\2a+b=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=0\\a=2\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\sqrt{x+3}=2\\\sqrt{y+1}=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)(tmđk)
Vậy hệ pt có nghiệm suy nhất (x;y) = (1;-1)
e: \(\left\{{}\begin{matrix}\dfrac{1}{x}-\dfrac{1}{y}=1\\\dfrac{3}{x}+\dfrac{4}{y}=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{3}{x}-\dfrac{3}{y}=3\\\dfrac{3}{x}+\dfrac{4}{y}=5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{-7}{y}=-2\\\dfrac{1}{x}-\dfrac{1}{y}=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{7}{2}\\\dfrac{1}{x}=1+\dfrac{2}{7}=\dfrac{9}{7}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{7}{2}\\x=\dfrac{7}{9}\end{matrix}\right.\)
a) Ta có: \(\left\{{}\begin{matrix}2\left(x+1\right)-3\left(y-2\right)=5\\-4\left(x-2\right)+5\left(y-3\right)=-1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x+2-3y+6=5\\-4x+8+5y-15=-1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x-3y=-3\\-4x+5y=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4x-6y=-6\\-4x+5y=6\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-y=0\\2x-3y=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=0\\2x-3\cdot0=-3\end{matrix}\right.\)
hay \(\left\{{}\begin{matrix}x=-\dfrac{3}{2}\\y=0\end{matrix}\right.\)
Vậy: hệ phương trình có nghiệm duy nhất là \(\left\{{}\begin{matrix}x=-\dfrac{3}{2}\\y=0\end{matrix}\right.\)
b) Ta có: \(\left\{{}\begin{matrix}8\left(x-3\right)-3\left(y+1\right)=-2\\3\left(x+2\right)-2\left(1-y\right)=5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}8x-24-3y-3=-2\\3x+6-2+2y=5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}8x-3y=25\\3x+2y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}24x-9y=75\\24x+16y=8\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-25y=67\\3x+2y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{-67}{25}\\3x=1-2y\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}3x=1-2\cdot\dfrac{-67}{25}=\dfrac{159}{25}\\y=-\dfrac{67}{25}\end{matrix}\right.\)
hay \(\left\{{}\begin{matrix}x=\dfrac{53}{25}\\y=-\dfrac{67}{25}\end{matrix}\right.\)
Vậy: Hệ phương trình có nghiệm duy nhất là \(\left\{{}\begin{matrix}x=\dfrac{53}{25}\\y=-\dfrac{67}{25}\end{matrix}\right.\)
a) HPT \(\Leftrightarrow\left\{{}\begin{matrix}2x-3y=-3\\-4x+5y=6\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}4x-6y=-6\\-4x+5y=6\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}-y=0\\x=\dfrac{3y-3}{2}\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}y=0\\x=-\dfrac{3}{2}\end{matrix}\right.\)
Vậy hệ phương trình có nghiệm \(\left(x;y\right)=\left(-\dfrac{3}{2};0\right)\)
b) HPT \(\Leftrightarrow\left\{{}\begin{matrix}8x-3y=25\\3x+2y=1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}16x-6y=50\\9x+6y=3\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}25x=53\\y=\dfrac{1-3x}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{53}{25}\\y=-\dfrac{67}{25}\end{matrix}\right.\)
Vậy hệ phương trình có nghiệm \(\left(x;y\right)=\left(\dfrac{53}{25};-\dfrac{67}{25}\right)\)
Đáp án C