K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 8 2017

Đáp án C

25 tháng 7 2023

a) Điều kiện để phương trình có hai nghiệm trái dấu là :

\(\left\{{}\begin{matrix}m\ne0\\\Delta phẩy>0\\x_1.x_2< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m\ne0\\m^2+4m+4-m^2+3m>0\\\dfrac{m-3}{m}< 0\end{matrix}\right.\)

\(\Rightarrow0< m< 3\)

b) Để phương trình có 2 nghiệm phân biệt thì : \(\Delta\) phẩy  > 0

\(\Rightarrow m< 4\)

Ta có : \(\dfrac{1}{x_1^2}+\dfrac{1}{x_2^2}=2\) 

\(\Leftrightarrow x_1^2+x_2^2=2x_1^2.x_2^2\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1.x_2=2x_1^2.x_2^2\)

Theo Vi-ét ta có : \(x_1+x_2=\dfrac{-2\left(m-2\right)}{m};x_1.x_2=\dfrac{m-3}{m}\)

\(\Rightarrow\dfrac{4\left(m-2\right)^2}{m^2}-2.\dfrac{m-3}{m}=2.\dfrac{\left(m-3\right)^2}{m^2}\)

\(\Leftrightarrow m=1\left(tm\right)\)

Vậy...........

 

 

 

25 tháng 7 2023

a) \(mx^2+2\left(m-2\right)x+m-3=0\left(1\right)\)

Để \(\left(1\right)\) có hai nghiệm trái dấu \(\Leftrightarrow\left\{{}\begin{matrix}\Delta'=\left(m-2\right)^2-m\left(m-3\right)>0\\\dfrac{m-3}{m}< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m^2-4m+4-m^2-3m>0\\0< m< 3\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}7m+4>0\\0< m< 3\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m>-\dfrac{4}{7}\\0< m< 3\end{matrix}\right.\) \(\Leftrightarrow0< m< 3\)

b) \(\dfrac{1}{x^2_1}+\dfrac{1}{x^2_2}=2\Leftrightarrow\dfrac{x^2_1+x_2^2}{x^2_1.x^2_2}=2\) \(\Leftrightarrow\dfrac{\left(x_1+x_2\right)^2-4x_1.x_2}{x^2_1.x^2_2}=2\)

\(\Leftrightarrow\left(\dfrac{x_1+x_2}{x_1.x_2}\right)^2-\dfrac{4}{x_1.x_2}=2\)

\(\Leftrightarrow\left(\dfrac{\dfrac{2\left(2-m\right)}{m}}{\dfrac{m-3}{m}}\right)^2-\dfrac{4}{\dfrac{m-3}{m}}=2\)

\(\Leftrightarrow\left(\dfrac{2\left(2-m\right)}{m-3}\right)^2-\dfrac{4m}{m-3}=2\)

\(\Leftrightarrow4\left(2-m\right)^2-4m\left(m-3\right)=2.\left(m-3\right)^2\)

\(\Leftrightarrow4\left(4-4m+m^2\right)-4m^2+12=2.\left(m^2-6m+9\right)\)

\(\Leftrightarrow16-16m+4m^2-4m^2+12=2m^2-12m+18\)

\(\Leftrightarrow2m^2+4m-10=0\)

\(\Leftrightarrow m^2+2m-5=0\)

\(\Leftrightarrow\left[{}\begin{matrix}m=-1+\sqrt[]{6}\\m=-1-\sqrt[]{6}\end{matrix}\right.\) \(\Leftrightarrow m=-1+\sqrt[]{6}\left(\Delta>0\Rightarrow m>-\dfrac{4}{7}\right)\)

 

27 tháng 4 2020

2.giải phương trình trên , ta được :
\(x_1=\frac{-m+\sqrt{m^2+4}}{2};x_2=\frac{-m-\sqrt{m^2+4}}{2}\)

Ta thấy x1 > x2 nên cần tìm m để x1 \(\ge\)2

Ta có : \(\frac{-m+\sqrt{m^2+4}}{2}\ge2\) \(\Leftrightarrow\sqrt{m^2+4}\ge m+4\)( 1 )

Nếu \(m\le-4\)thì ( 1 ) có VT > 0, VP < 0 nên ( 1 ) đúng 

Nếu m > -4 thì  ( 1 ) \(\Leftrightarrow m^2+4\ge m^2+8m+16\Leftrightarrow m\le\frac{-3}{2}\)

Ta được : \(-4< m\le\frac{-3}{2}\)

Tóm lại, giá trị phải tìm của m là \(m\le\frac{-3}{2}\)

16 tháng 1

Ta có pt: \(mx^2-3\left(m+1\right)x+m^2-13m-4=0\)

Do pt có nghiệm là x = -2 nên thay vào pt ta có: 

\(m\cdot\left(-2\right)^2-3\left(m+1\right)\cdot-2+m^2-13m-4=0\)

\(\Leftrightarrow4m+6\left(m+1\right)+m^2-13m-4=0\)

\(\Leftrightarrow6m+6+m^2-9m-4=0\)

\(\Leftrightarrow m^2-3m+2=0\)

\(\Delta=\left(-3\right)^2-4\cdot1\cdot2=1>0\)

\(\Leftrightarrow\left[{}\begin{matrix}m_1=\dfrac{3+\sqrt{1}}{2}=2\\m_2=\dfrac{3-\sqrt{1}}{2}=1\end{matrix}\right.\)

Nếu m = 1 thì pt là: 

\(x^2-3\left(1+1\right)x+1^2-13\cdot1-4=0\)

\(\Leftrightarrow x^2-6x-16=0\)

Theo vi-et: \(x_1+x_2=-\dfrac{-6}{1}\Rightarrow x_2=6-x_2=8\) 

Nếu m = 2 thì pt là:

\(2x^2-3\cdot\left(2+1\right)x+2^2-13\cdot2-4=0\)

\(\Leftrightarrow2x^2-9x-26=0\)  

Theo vi-et: \(x_1+x_2=-\dfrac{-9}{2}\Leftrightarrow x_2=\dfrac{9}{2}+2=\dfrac{13}{2}\)

16 tháng 1

còn một nghiệm nữa của x :v

 

28 tháng 5 2022

Ptr có:`\Delta=(-m)^2-4(m-3)=m^2-4m+12=(m-2)^2+8 > 0 AA m`

`=>` Ptr luôn có nghiệm `AA m`

`=>` Áp dụng Viét có:`{(x_1+x_2=[-b]/a=m),(x_1.x_2=c/a=m-3):}`

Ta có:`A=2(x_1 ^2+x_2 ^2)-x_1.x_2`

`<=>A=2[(x_1+x_2)^2-2x_1.x_2]-x_1.x_2`

`<=>A=2[m^2-2(m-3)]-(m-3)`

`<=>A=2(m^2-2m+6)-m+3`

`<=>A=2m^2-4m+12-m+3=2m^2-5m+15`

`<=>A=2(m^2-5/2+15/2)`

`<=>A=2[(m-5/4)^2+95/16]`

`<=>A=2(m-5/4)^2+95/8`

Vì `2(m-5/4)^2 >= 0 AA m<=>2(m-5/4)^2+95/8 >= 95/8 AA m`

     Hay `A >= 95/8 AA m`

Dấu "`=`" xảy ra`<=>(m-5/4)^2=0<=>m=5/4`

Vậy `GTN N` của `A` là `95/8` khi `m=5/4`

28 tháng 5 2022

Đề liệu cs sai 0 bạn nhỉ, ở cái biểu thức `A` í chứ nếu đề vậy thì 0 tìm đc GTNN đâu (Theo mik thì là vậy)

17 tháng 4 2016

trời đất
ai tl hộ mình vs

Ta có: \(-x^2+mx+4-m^2=0\)

\(\Leftrightarrow x^2-mx+m^2-4=0\)

Để phương trình có hai nghiệm trái dấu thì (m-2)(m+2)<0

hay -2<m<2

Bạn ghi lại phương trình đi bạn

Trường hợp 1: m=0

Phương trình sẽ là \(-2\cdot\left(0-1\right)x+0-3=0\)

=>2x-3=0

hay x=3/2

=>Phương trình có đúng 1 nghiệm

Trường hợp 2: m<>0

\(\Delta=\left(2m-2\right)^2-4m\left(m-3\right)\)

\(=4m^2-8m+4-4m^2+12m=4m+4\)

a: Để phương trình có nghiệm kép thì 4m+4=0

hay m=-1

c: Để phương trình vô nghiệm thì 4m+4<0

hay m<-1

d: Để phương trình có nghiệm thì 4m+4>=0

hay m>=-1

6 tháng 6 2023

\(\Delta=\left(-m\right)^2-2.1.\left(m-1\right)\\ =m^2-2m+1\\ =\left(m-1\right)^2\)

Phương trình có hai nghiệm phân biệt :

\(\Leftrightarrow\Delta>0\\ \Rightarrow\left(m-1\right)^2>0\\ \Rightarrow m\ne1\)

Theo vi ét : 

\(\Leftrightarrow\left\{{}\begin{matrix}x_1+x_2=m\\x_1x_2=m-1\end{matrix}\right.\)

\(x^2_1+x^2_2=x_1+x_2\\ \Leftrightarrow x^2_1+x^2_2=m\\ \Leftrightarrow\left(x^2_1+2x_1x_2+x_2^2\right)-2x_1x_2=m\\ \Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2-m=0\\ \Leftrightarrow m^2-2\left(m-1\right)-m=0\\ \Leftrightarrow m^2-2m+2-m=0\\ \Leftrightarrow m^2-3m+2=0\\ \Leftrightarrow\left[{}\begin{matrix}m=1\left(loại\right)\\m=2\left(t/m\right)\end{matrix}\right.\)

Vậy \(m=2\)