K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 6 2019

Đáp án A

27 tháng 12 2020

Giúp vớiiiiii

NV
7 tháng 5 2021

Pt đã cho có 2 nghiệm pb khi và chỉ khi:

\(\Delta'=\left(m+1\right)^2-\left(-2m-1\right)>0\)

\(\Leftrightarrow m^2+4m+2>0\)

\(\Rightarrow\left[{}\begin{matrix}m>-2+\sqrt{2}\\m< -2-\sqrt{2}\end{matrix}\right.\)

7 tháng 5 2021

undefined

6 tháng 5 2022

Cho phương trình x2 + 2 ( m + 3 )x + 2m - 11

a) Ta có:

△' = b'- ac = ( m + 3 )2 - 1 . ( 2m - 11 ) 

m2 - 6m + 9 - 2m + 11

△' = b'- ac = 

25 tháng 11 2023

Xét phương trình hoành độ giao điểm\(x^2\)+4x-m=0 <=> x^2+4x=m, đây là kết hợp của 2 hàm số (P):y=\(x^2\)+4x và (d):y=m.
Khi vẽ đồ thị ta thấy parabol đồng biến trên khoảng (-2;+∞)=> Điểm giao giữa parabol và đồ thị y=m là điểm duy nhất thỏa mãn phương trình có duy nhất 1 nghiệm thuộc khoảng (-3;1).Vậy để phương trình có 1 nghiệm duy nhất <=> delta=0 <=>16+4m=0<=>m=-4.

mình trình bày hơi dài mong bạn thông cảm loading...  

1) Thay m=2 vào (1), ta được:

\(x^2-2\cdot3x+16-8=0\)

\(\Leftrightarrow x^2-6x+8=0\)

\(\Leftrightarrow\left(x-2\right)\left(x-4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=4\end{matrix}\right.\)

Vậy: Khi m=2 thì (1) có hai nghiệm phân biệt là: \(x_1=2\)\(x_2=4\)

b) Ta có: \(\Delta=4\cdot\left(2m-1\right)^2-4\cdot1\cdot\left(8m-8\right)\)

\(\Leftrightarrow\Delta=4\cdot\left(4m^2-4m+1\right)-4\left(8m-8\right)\)

\(\Leftrightarrow\Delta=16m^2-16m+4-32m+32\)

\(\Leftrightarrow\Delta=16m^2-48m+36\)

\(\Leftrightarrow\Delta=\left(4m\right)^2-2\cdot4m\cdot6+6^2\)

\(\Leftrightarrow\Delta=\left(4m-6\right)^2\)

Để phương trình có hai nghiệm phân biệt thì \(\left(4m-6\right)^2>0\)

mà \(\left(4m-6\right)^2\ge0\forall m\)

nên \(4m-6\ne0\)

\(\Leftrightarrow4m\ne6\)

hay \(m\ne\dfrac{3}{2}\)

Vậy: Để phương trình có hai nghiệm phân biệt thì \(m\ne\dfrac{3}{2}\)

3 tháng 4 2023

\(x^2-2\left(m+1\right)x+2m=0\left(1\right)\)

a, \(\Delta'=\left(m+1\right)^2-2m=m^2+>0\forall m\)

⇒ Phương trình có hai nghiệm phân biệt 

b, Để phương trình có hai nghiệm cùng dương thì : 

\(\left\{{}\begin{matrix}\Delta'>0\\S>0\\P>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m^2+1>0\left(luôn-đúng\right)\\2\left(m+1\right)>0\\2m>0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}m>-1\\m>0\end{matrix}\right.\)\(\Leftrightarrow m>0\)

c, Theo viét \(\left\{{}\begin{matrix}x_1+x_2=2\left(m+1\right)\left(2\right)\\x_1x_2=2m\left(3\right)\end{matrix}\right.\)

Trừ vế theo vế (2) cho (3) được : \(x_1+x_2-x_1x_2=2m+2-2m=2\)

Kết luận ....

NV
11 tháng 11 2021

Đặt \(\left|x\right|=t\ge0\)

\(\Rightarrow t^2-2t+1-m=0\) (1)

Phương trình (1) là bậc 2 nên có đối đa 2 nghiệm t

Với mỗi giá trị \(t>0\) cho 2 nghiệm x tương ứng nên pt đã cho có 4 nghiệm pb khi và chỉ khi (1) có 2 nghiệm dương phân biệt

\(\Leftrightarrow\left\{{}\begin{matrix}\Delta'=1-\left(1-m\right)>0\\t_1+t_2=2>0\\t_1t_2=1-m>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m>0\\m< 1\end{matrix}\right.\) \(\Leftrightarrow0< m< 1\)

20 tháng 4 2019

a) Ta có: \(\Delta=\left[-2\left(m-1\right)\right]^2-4\cdot1\cdot\left(2m-5\right)\)

\(=\left(2m-2\right)^2-4\left(2m-5\right)\)

\(=4m^2-8m+4-8m+20\)

\(=4m^2-16m+24\)

\(=4m^2-2\cdot2m\cdot4+16+8\)

\(=\left(2m-4\right)^2+8>0\forall m\)

Vậy: Phương trình (1) luôn có hai nghiệm phân biệt \(x_1;x_2\)