Tìm x , biết :
x chia cho 5 thì dư 3 ; x chia cho 3 dư 1 ; x chia cho 7 dư 5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì f(x) chia x-3 dư 7
\(\Rightarrow f\left(x\right)=\left(x-3\right)q\left(x\right)+7\)
\(\Rightarrow f\left(3\right)=7\)
Vì f(x) chia x-2 dư 5
\(\Rightarrow f\left(x\right)=\left(x-2\right)q\left(x\right)+5\)
\(\Rightarrow f\left(2\right)=5\)
Ta có f(x) khi chia (x-2)(x-3) thì được thương là 3x và còn dư
\(\Rightarrow f\left(x\right)=\left(x-2\right)\left(x-3\right)3x+ax+b\)
\(\Rightarrow\hept{\begin{cases}f\left(2\right)=2a+b=5\\f\left(3\right)=3a+b=7\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}a=2\\b=1\end{cases}}\)
Vậy \(f\left(x\right)=\left(x-2\right)\left(x-3\right)3x+2x+1\)
bài này chỉ giải được cách nâng cao thôi để mình trình bày cho bạn xem thử
theo gt tao có \(x^3+ax+b=\left(x+1\right)A_{\left(X\right)}+7=\left(X-3\right)B_{\left(X\right)}-5\)
Theo định lý bezout
tao có \(F_{\left(-1\right)}=7\) (1)
Tương tự \(f_{\left(3\right)}=-5\) (2)
để chia \(f_{\left(x\right)}=\left(x+1\right)\left(x-3\right)c_x+ax+b\)
kết hợp với (1) tao có \(f_{\left(-1\right)}=-a+b=7\)
kết hợp với (2) tao có \(f_{\left(3\right)}=3a+b=-5\)
lấy hai vế trừ cho nhau \(-4a=12=>a=-3\)
\(=>b=4\) vậy dư của phép chia là -3x+4
để mình giải thích chỗ ax+b phần này cũng hơi khó hiểu 1 chút
nếu như ta lấy (x+1)(x-3) thì bậc cao nhất của đa thức này là bậc 2 mà theo như sgk đa thức chia chia cho đa thức bị chia thì dư của phép chia đó phải bé hơn bậc của đa thức bị chia
còn chỗ ax+b các chữ a,b mà mình giải bạn đừng nghĩ là các chữ cái này là các chữ cái cho ở giả thuyết chẳng qua là mình viết quen tay thôi còn phần bezout thì đây là một chuyên đề nâng cao nếu bạn là hsg thì cũng sẽ bồi dưỡng thôi
Gọi thương của P(x) khi chi cho (x-2), (x-3) lần lượt là A(x),B(x) =>P(x)=(x-2).A(x)+5 (1) và P(x)=(x-3).B(x)=7 (2) Gọi thương của P(x) khi chia cho (x-2).(x-3) là C(x) và dư là R(x) Ta có : (x-2)(x-3) có bậc là 2 => R(x) có bậc là 1 => R(x) có dạng ax+b (a,b là số nguyên ) =>R(x)=(x-2)(x-3).C(x)+ax+b (3) thay x=2 vào (1) và (3) ta có: P(x)=2a+b=5 thay x=3 vào (2) và (3) ta có: P(x)=3a+b=7 => a=2,b=1 =>R(x)=2x+1 Vậy dư của P(x) khi chia cho (x-2)(x-3) là 2x+1
a) Ta có f(x) - 5 \(⋮\)x + 1
=> x3 + mx2 + nx + 2 - 5 \(⋮\)x + 1
=> x3 + mx2 + nx - 3 \(⋮\)x + 1
=> x = - 1 là nghiệm đa thức
Khi đó (-1)3 + m(-1)2 + n(-1) - 3 = 0
<=> m - n = 4 (1)
Tương tự ta được f(x) - 8 \(⋮\)x + 2
=> x3 + mx2 + nx - 6 \(⋮\) x + 2
=> x = -2 là nghiệm đa thức
=> (-2)3 + m(-2)2 + n(-2) - 6 = 0
<=> 2m - n = 7 (2)
Từ (1)(2) => HPT \(\left\{{}\begin{matrix}m-n=4\\2m-n=7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=3\\n=-1\end{matrix}\right.\)
Vậy đa thức đó là f(x) = x3 + 3x2 - x + 2
b) f(x) - 7 \(⋮\)x + 1
=> x3 + mx + n - 7 \(⋮\) x + 1
=> x = -1 là nghiệm đa thức
=> (-1)3 + m(-1) + n - 7 = 0
<=> -m + n = 8 (1)
Tương tự ta được : x3 + mx + n + 5 \(⋮\)x - 3
=> x = 3 là nghiệm đa thức
=> 33 + 3m + n + 5 = 0
<=> 3m + n = -32 (2)
Từ (1)(2) => HPT : \(\left\{{}\begin{matrix}3m+n=-32\\-m+n=8\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4m=-40\\-m+n=8\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=-10\\n=-2\end{matrix}\right.\)
Vậy f(x) = x3 - 10x -2
1 x=rất nhiều trường hợp suy nghĩ đi