lm on giup con cái đi
Cho tam giác ABC có AB<AC.Gọi M là trung điểm của BC ,từ M kẻ đường thẳng vuông góc với tia phân giác của góc A cắt các đường thẳng AB ,AC lần lượt tại E và F . Chứng minh rằng:a,AE =EF b,AE=AB+AC/2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ko mình giải toán trên mạng ý đề nó thế mà mình còn chụp cả hình về máy nữa mà
Gọi M, N, P lần lượt là trung điểm BC, CA, AB
Ta có: \(\left\{{}\begin{matrix}BM=\dfrac{1}{2}BC\\BP=\dfrac{1}{2}AB\\AB=BC\end{matrix}\right.\) \(\Rightarrow BM=BP\)
\(\Rightarrow\Delta BMP\) cân tại B
Mà \(\widehat{B}=60^0\) (do tam giác ABC đều) \(\Rightarrow\Delta BMP\) đều
\(\Rightarrow MB=MP\)
Hoàn toàn tương tự, ta có tam giác CMN đều \(\Rightarrow MC=MN\)
\(\Rightarrow MB=MC=MP=MN\)
\(\Rightarrow B;C;P;N\) cùng thuộc đường tròn tâm M hay đường tròn đường kính BC đi qua trung điểm AB, AC
ta có AB = 8cm;AC=6cm;BC=9cm
suy ra BC>AB>AC(1)
Mà cạnh đối diện với cạnh lớn hơn thì lớn hớn , đối diện với cạnh nhỏ hơn thì nhỏ hơn(2)
AB đối diện với góc C (3)
BC đối diện với góc A(4)
AC đối diện với góc B(5)
Từ (1), (2), (3), (4), (5) suy ra A>C>B
a) Xét ΔABM và ΔACM có
AB=AC(ΔABC cân tại A)
AM chung
BM=CM(M là trung điểm của BC)
Do đó: ΔABM=ΔACM(c-c-c)
⇒\(\widehat{BAM}=\widehat{CAM}\)(hai góc tương ứng)
mà tia AM nằm giữa hai tia AB,AC
nên AM là tia phân giác của \(\widehat{BAC}\)
b) Xét ΔABC có
AB là cạnh đối diện của \(\widehat{B}\)
AC là cạnh đối diện của \(\widehat{C}\)
\(\widehat{B}=\widehat{C}\)(gt)
Do đó: AB=AC(Định lí quan hệ giữa cạnh và góc đối diện trong tam giác)
a) Vì AB = AC => \(\Delta ABC\) cân tại A => \(\widehat{ABC}\) = \(\widehat{ACB}\)
Xét \(\Delta ABM\) và \(\Delta ACM\) có:
\(\widehat{ABC}\) = \(\widehat{ACB}\)
AB = AC
MB = MC
=> \(\Delta ABM\) = \(\Delta ACM\) (c.g.c)
=> \(\widehat{BAM}\) = \(\widehat{CAM}\) (2 góc tương ứng)
b) Vì \(\widehat{B}\) = \(\widehat{C}\) => \(\Delta ABC\) cân tại A
=> AB = AC
2: Xét ΔAHB vuông tại H có HE là đường cao
nên \(AE\cdot AB=AH^2\left(1\right)\)
Xét ΔAHC vuông tại H có HF là đường cao
nên \(AF\cdot AC=AH^2\left(2\right)\)
Từ (1) và (2) suy ra \(AE\cdot AB=AF\cdot AC\)