Cho 3 số thực a,b,c. Tìm giá trị nhỏ nhất của biểu thức:
\(S=\frac{1344}{a+\sqrt{ab}+\sqrt[3]{abc}}-\frac{2016}{\sqrt{a+b+c}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(\sqrt{\frac{ab}{ab+2c}}=\sqrt{\frac{ab}{ab+\left(a+b+c\right)c}}=\sqrt{\frac{ab}{\left(a+c\right)\left(b+c\right)}}\le\frac{1}{2}\left(\frac{a}{a+c}+\frac{b}{b+c}\right)\)
Đẳng thức xảy ra khi và chỉ khi \(\frac{a}{a+c}+\frac{b}{b+c}\)
Tương tự ta cũng có
\(\sqrt{\frac{bc}{bc+2a}}\le\frac{1}{2}\left(\frac{b}{b+a}+\frac{c}{c+a}\right);\sqrt{\frac{ca}{ca+2b}}\le\frac{1}{2}\left(\frac{c}{c+a}+\frac{a}{a+b}\right)\)
Cộng các vế ta được \(S\le\frac{1}{2}\left(\frac{a+b}{a+b}+\frac{b+c}{b+c}+\frac{c+a}{c+a}\right)=\frac{3}{2}\)
Đẳng thức xảy ra khi và chỉ khi \(a=b=c=\frac{2}{3}\)
Vậy \(S_{max}=\frac{3}{2}\Leftrightarrow x=y=z=\frac{2}{3}\)
Làm đi làm lại nhiều rồi chán không muốn viết nữa vô TKHĐ xem hình ảnh
Bài 1 :
a) \(ĐKXĐ:\hept{\begin{cases}x\ge0\\x\ne4\\x\ne9\end{cases}}\)
\(A=\left(1-\frac{\sqrt{x}}{\sqrt{x}+1}\right):\left(\frac{\sqrt{x}+3}{\sqrt{x}-2}+\frac{\sqrt{x}+2}{3-\sqrt{x}}+\frac{\sqrt{x}+2}{x-5\sqrt{x}+6}\right)\)
\(\Leftrightarrow A=\frac{\sqrt{x}+1-\sqrt{x}}{\sqrt{x}+1}:\frac{x-9-x+4+\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)
\(\Leftrightarrow A=\frac{1}{\sqrt{x}+1}:\frac{\sqrt{x}-3}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)
\(\Leftrightarrow A=\frac{1}{\sqrt{x}+1}:\frac{1}{\sqrt{x}-2}\)
\(\Leftrightarrow A=\frac{\sqrt{x}-2}{\sqrt{x}+1}\)
b) Để \(A< -1\)
\(\Leftrightarrow\frac{\sqrt{x}-2}{\sqrt{x}+1}< -1\)
\(\Leftrightarrow\sqrt{x}-2< -\sqrt{x}-1\)
\(\Leftrightarrow2\sqrt{x}< 1\)
\(\Leftrightarrow\sqrt{x}< \frac{1}{2}\)
\(\Leftrightarrow x< \frac{1}{4}\)
Vậy để \(A< -1\Leftrightarrow x< \frac{1}{4}\)
Áp dụng BĐT AM - GM ta có:
\(4\sqrt{ab}=2\sqrt{a.4b}\le a+4b\)
\(4\sqrt{bc}=2\sqrt{b.4c}\le b+4c\)
\(4\sqrt[3]{abc}=\sqrt[3]{a.4b.16c}\le\frac{a+4b+16c}{3}\)
Cộng theo vế 3 BĐT ta được:
\(8a+3b+4\left(\sqrt{ab}+\sqrt{bc}+\sqrt[3]{abc}\right)\le\frac{28}{3}\left(a+b+c\right)\)
\(\Rightarrow P\le\frac{28\left(a+b+c\right)}{3+3\left(a+b+c\right)^2}=\frac{14}{3}-\frac{14\left(a+b+c-1\right)^2}{3\left[\left(a+b+c\right)^2+1\right]}\le\frac{14}{3}\)
\(\Rightarrow Max_P=\frac{14}{3}\)
Đẳng thức xảy ra \(\Leftrightarrow a+b+c=1\)và \(a=4b=16c\)
\(\Leftrightarrow a=\frac{16}{21};b=\frac{4}{21};c=\frac{1}{21}\)