K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 11 2018

Chọn A.

Suy ra 

27 tháng 4 2019

Đáp án A

6 tháng 5 2018

5 tháng 1 2017

Chọn D

                                               

20 tháng 11 2017

Phương pháp:

∆ ABC có AM là trung tuyến, I là điểm bất kì trên đoạn AM, đường thẳng đi qua I cắt AB, AC lần lượt tại E, F.

Khi đó: 

 

Cách giải:

Ta có:

Xét SAC có: 

Dấu "=" xảy ra 

Khi đó 

Vậy  V 1 V  đạt giá trị nhỏ nhất bằng  1 3  khi và chỉ khi a= b =  2 3

Chọn A.

23 tháng 12 2018



29 tháng 5 2017

Đáp án C

Bài toán sử dụng bổ đề sau: Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Mặt phẳng (P) bất kì cắt các cạnh SA, SB, SC, SD lần lượt tại các điểm A’, B’, C’, D’ với tỉ số

S A ' S A = x ; S B ' S B = y ; S C ' S C = z ; S D ' S D = t  thì ta có đẳng thức

1 x + 1 z = 1 y + 1 t  và tỉ số

V S . A ' B ' C ' D ' V S . A B C D = x y z t 4 1 x + 1 y + 1 z + 1 t

Áp dụng vào bài toán

đặt u = S M S B , v = S N S D  ta có

1 u + 1 v = S A S A ' + S C S I = 1 1 + 1 2 3 = 5 2 ≥ 2 u v ≥ 16 25 ⇒ V ' V = u v .1. 2 3 4 1 u + 1 v + 1 1 + 1 2 3 = 5 u v 6 ≥ 8 15

21 tháng 6 2018

Đáp án C

Gọi O là tâm của hình bình hành ABCD

Gọi H = S K ∩ A I  qua H kẻ d / / B D  cắt SB;SD lần lượt tại M;N

Xét tam giác SAC 

I S I C . A C O C . O H S H = 1 ⇒ O H S C = 1 4 ⇒ S H S C = 4 5

Mà  M N / / B D → S M S B = S N S D = S H S O = 4 5

Ta có  V S . A M I V S . A C D = S M S B . S I S C = 2 3 . S M S B ⇒ V S . A M I V S . A B C D = 1 3 . S M S B

Và  V S . A N I V S . A C D = S N S D . S I S C = 2 3 . S D S D ⇒ V S . A N I V S . A B C D = 1 3 . S N S D

Suy ra  V ' V = 1 3 S M S B + S N S D = 1 3 . 4 5 + 4 5 = 8 15

30 tháng 3 2017

21 tháng 1 2019