K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 11 2018

Đáp án B

Phương trình hoành độ giao điểm là:

\(x^2-mx+2m-4=0\)

\(\Delta=\left(-m\right)^2-4\left(2m-4\right)\)

\(=m^2-8m+16=\left(m-4\right)^2\)

Để (P) cắt (d) tại hai điểm phân biệt thì m-4<>0

hay m<>4

Ta có: \(x_1^2+x_2^2\)

\(=\left(x_1+x_2\right)^2-2x_1x_2\)

\(=m^2-2\left(2m-4\right)\)

\(=m^2-4m+8\)

\(=\left(m-2\right)^2+4\ge4\forall x\)

Dấu '=' xảy ra khi m=2

Phương trình hoành độ giao điểm của (P) và (d) là:

\(\dfrac{1}{2}x^2=x-m+3\)

\(\Leftrightarrow\dfrac{1}{2}x^2-x+m-3=0\)

\(\Delta=\left(-1\right)^2-4\cdot\dfrac{1}{2}\cdot\left(m-3\right)\)

\(=1-2\left(m-3\right)\)

\(=1-2m+6\)

=-2m+7

Để phương trình có hai nghiệm phân biệt thì \(\Delta>0\)

\(\Leftrightarrow-2m+7>0\)

\(\Leftrightarrow-2m>-7\)

hay \(m< \dfrac{7}{2}\)

Áp dụng hệ thức Vi-et, ta được:

\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{-b}{a}=\dfrac{-\left(-1\right)}{\dfrac{1}{2}}=\dfrac{1}{\dfrac{1}{2}}=2\\x_1x_2=\dfrac{c}{a}=\dfrac{m-3}{\dfrac{1}{2}}=2m-6\end{matrix}\right.\)

Ta có: \(\left\{{}\begin{matrix}x_1+x_2=2\\x_2=3x_1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}4x_1=2\\x_2=3x_1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_1=\dfrac{1}{2}\\x_2=3\cdot\dfrac{1}{2}=\dfrac{3}{2}\end{matrix}\right.\)

Ta có: \(x_1x_2=2m-6\)

\(\Leftrightarrow2m-6=\dfrac{1}{2}\cdot\dfrac{3}{2}=\dfrac{3}{4}\)

\(\Leftrightarrow2m=\dfrac{27}{4}\)

hay \(m=\dfrac{27}{8}\)(loại)

21 tháng 5 2023

`a)` Phương trình hoành độ của `(P)` và `(d)` là:

     `x^2=(2m+2)x-m-2m`

`<=>x^2-2(m+1)x+3m=0`     `(1)`

`(P)` cắt `(d)` tại `2` điểm `A,B<=>` Ptr `(1)` có `2` nghiệm phân biệt

   `=>\Delta' > 0`

`<=>(m+1)^2-3m > 0`

`<=>m^2+2m+1-3m > 0`

`<=>m^2-m+1 > 0` (LĐ `AA m`)

   `=>` Áp dụng Viét có: `{(x_1+x_2=-b/a=2m+2),(x_1.x_2=c/a=3m):}`

Ta có: `{(2x_1+x_2=5),(x_1+x_2=2m+2):}`

`<=>{(x_1=3-2m),(3-2m+x_2=2m+2):}`

`<=>{(x_1=3-2m),(x_2=4m-1):}`

Thay vào `x_1.x_2=3m`

  `=>(3-2m)(4m-1)=3m`

`<=>12m-3-8m^2+2m=3m`

`<=>8m^2-11m+3=0`

`<=>(m-1)(8m-3)=0<=>[(m=1),(m=3/8):}`

21 tháng 5 2023

câu b đâu bạn

 

b) Phương trình hoành độ giao điểm của (P) và (d) là:

\(x^2=2\left(m-1\right)x+5-2m\)

\(\Leftrightarrow x^2-2\left(m-1\right)x-5+2m=0\)

Áp dụng hệ thức Vi-et, ta được:

\(x_1+x_2=2\left(m-1\right)\)

Ta có: \(x_1+x_2=6\)

\(\Leftrightarrow2\left(m-1\right)=6\)

\(\Leftrightarrow m-1=3\)

hay m=4

Vậy: m=4

1: Tọa độ A là:

y=0 và 4x+m-3=0

=>x=(-m+3)/4 và y=0

=>OA=|m-3|/4

Tọa độ B là:

x=0 và y=m-3

=>OB=|m-3|

Theo đề, ta có: 1/2*(m-3)^2/4=9

=>(m-3)^2/4=18

=>(m-3)^2=72

=>\(m=\pm6\sqrt{2}+3\)

2:

PTHĐGĐ là:

x^2-4x-m+3=0

Δ=(-4)^2-4*(-m+3)=16+4m-12=4m+4

Để (P) cắt (d) tại hai điểm phân biệt thì 4m+4>0

=>m>-1

(4-x1)(x2-1)=2

=>4x2-4-x1x2+1=2

=>x2(x1+x2)-3-(-m+3)=2

=>x2*4-3+m-3=2

=>x2*4=2-m+6=8-m

=>x2=2-1/2m

=>x1=4-2+1/2m=1/2m+2

x1*x2=-m+3

=>-m+3=(1/2m+2)(2-1/2m)=4-1/4m^2

=>-m+3-4+1/4m^2=0

=>1/4m^2-m-1=0

=>m^2-4m-4=0

=>\(m=2\pm2\sqrt{2}\)

PTHĐGĐ là:

x^2-(2m+1)x+m^2+m-6=0

Δ=(2m+1)^2-4(m^2+m-6)

=4m^2+4m+1-4m^2-4m+24

=25>0

=>Phương trình luôn có hai nghiệm phân biệt

\(\left|x_1^2-x_2^2\right|=50\)

\(\Leftrightarrow\left|\left(2m+1\right)\right|\cdot\sqrt{\left(2m+1\right)^2-4\left(m^2+m-6\right)}=50\)

\(\Leftrightarrow\left|2m+1\right|\cdot5=50\)

=>|2m+1|=10

=>m=9/2 hoặc m=-11/2

10 tháng 2 2021

kiểm tra lại đề nhé lỗi quá