Câu 16: Tìm số tự nhiên x biết
a)2x + 5 = 34 . 32.
𝑏) 120 – (𝑥 + 55) = 60.
c)x ⋮ 12 và x < 60.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 2x + 15 = 45
2x = 45 - 15
2x = 30
x = 30 : 2
x = 15 (nhận)
Vậy x = 15
b) 120 - 2.(x + 3) = 22.52
120 - 2.(x + 3) = 1144
2.(x + 3) = 120 - 1144
2.(x + 3) = - 1024
x + 3 = -1024 : 2
x + 3 = -512
x = - 512 - 3
x = -515 (loại)
Vậy không tìm được x thỏa mãn x là số tự nhiên
c) 11 ⋮ (x - 2)
⇒ x - 2 ∈ Ư(11) = {-11; -1; 1; 11}
⇒ x ∈ {-9; 1; 3; 13}
Do x là số tự nhiên
⇒ x ∈ {1; 3; 13}
d) Do 12 ⋮ x và 18 ⋮ x nên x ∈ ƯC(12; 18)
12 = 2².3
18 = 2.3²
ƯCLN(12; 18) = 2.3 = 6
⇒ x ∈ ƯC(12; 18) = {1; ; 3; 6}
1)
a) 2x + 5 = 3⁴ : 3²
2x + 5 = 3²
2x + 5 = 9
2x = 9 - 5
2x = 4
x = 4 : 2
x = 2
b) (3x - 24).73 = 2.74
(3x - 24).73 = 148
3x - 24 = 148/73
3x = 148/73 + 24
3x = 1900/73
x = 1900/73 : 3
x = 1900/219
c) [3.(42 - x)] + 15 = 23.3
126 - 3x + 15 = 69
141 - 3x = 69
3x = 141 - 69
3x = 72
x = 72 : 3
x = 24
d) 126 + (132 - x) = 300
132 - x = 300 - 126
132 - x = 174
x = 132 - 174
x = -42
2)
a) 120 - (x + 55) = 60
x + 55 = 120 - 60
x + 155 = 60
x = 60 - 55
x = 5
b) (7x - 11).3 = 25.52 + 200
(7x - 11).3 = 1500
7x - 11 = 1500 : 3
7x - 11 = 500
7x = 500 + 11
7x = 511
x = 511 : 7
x = 73
c) 2x + 2x + 4 = 544
4x = 544 - 4
4x = 540
x = 540 : 4
x = 135
gọi số cần tìm là x(10<x<60)
ta có:
120 chia hết cho x
180 chia hết cho x
suy ra:
x thuocc boi chung cua 120,180
a, \(x\in B\left(13\right)=\left\{0;13;26;39;52;65;78;.........\right\}\)
Mà : 21 < x < 65 => \(x\in\left\{26;39;52\right\}\)
b, Vì : x chia hết cho 17 , mà 10 < x < 60
=> \(x\in B\left(17\right)=\left\{17;34;51\right\}\)
c, \(\Rightarrow x\in\left\{10;15;30\right\}\)
d, Vì 12 chia hết cho x
=> \(x\in\left\{1;2;3;4;6;12\right\}\)
a) \(\Leftrightarrow2x+5=3^6\\ \Leftrightarrow2x+5=729\\ \Leftrightarrow x=362\)
b) \(\Leftrightarrow x+55=60\\ \Leftrightarrow x=5\)
c) \(x=\left\{12;24;36;48\right\}\)
c) x ⋮ 12 và x < 60
x ∈ B(12) = { 0 ; 12 ; 24 ; 36 ; 48 ; 60 ;...}
mà x ⋮ 12 và x < 60
nên x ∈ B(12)= { 0 ; 12 ; 24 ; 36 ; 48 }