K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
30 tháng 10 2021

Lời giải:

Áp dụng công thức $\sin ^2a+\cos ^2a=1$ và BĐT Bunhiacopxky:

$(\sin a+\cos a)^2\leq (\sin ^2a+\cos ^2a)(1+1)=2$

$\Rightarrow \sin a+\cos a\leq \sqrt{2}$
Vậy GTLN của $\sin a+\cos a$ là $\sqrt{2}$

25 tháng 9 2020

\(=\sqrt{3}\left(\sqrt{3}sina+cosa\right)\) 

\(=\sqrt{3}\cdot2\left(\frac{\sqrt{3}}{2}sina+\frac{1}{2}cosa\right)\) 

\(=2\sqrt{3}\left(cos30sina+sin30cosa\right)\) 

\(=2\sqrt{3}sin\left(a+30\right)\) 

Ta có \(-1\le sin\left(a+30\right)\le1\) 

\(-2\sqrt{3}\le2\sqrt{3}sin\left(a+30\right)\le2\sqrt{3}\)                   

P đạt GTLN 

\(\Leftrightarrow2\sqrt{3}sin\left(a+30\right)=2\sqrt{3}\) 

\(sin\left(a+30\right)=1\) 

\(a+30=90+k360\) ( vì a góc nhọn nên bỏ k 360 độ đi )             

\(a+30=90\)     

\(a=60\)

Vậy P dạt GTLN là \(2\sqrt{3}\) \(\Leftrightarrow a=60\)

NV
26 tháng 3 2022

Đặt \(A=sin\alpha+sin\left(90^0-\alpha\right)=sin\alpha+cos\alpha\)

\(\Rightarrow A^2=\left(sin\alpha+cos\alpha\right)^2\le2\left(sin^2\alpha+cos^2\alpha\right)=2\)

\(\Rightarrow A\le\sqrt{2}\)

\(A_{max}=\sqrt{2}\) khi \(\alpha=45^0\)

21 tháng 8 2020

làm nốt câu này rồi đi ngủ 

\(Q=\frac{|x-2020|+|x-2019|+2019+1}{|x-2019|+|x-2020|+2019}=1+\frac{1}{|x-2020|+|x-2019|+2019}\)

Để Q đạt GTLN thì \(|x-2020|+|x-2019|+2019\)đạt GTNN 

Ta có : \(|x-2020|+|x-2019|+2019=|x-2020|+|2019-x|+2019\)

Sử dụng BĐT /a/ + /b/ >= /a+b/ ta được : 

\(|x-2020|+|2019-x|+2019\ge|x-2020+2019-x|+2019=2020\)

Dấu = xảy ra khi và chỉ khi \(\left(x-2020\right)\left(2019-x\right)\ge0\Leftrightarrow2020\ge x\ge2019\)

Khi đó : \(Q=1+\frac{1}{|x-2020|+|x-2019|+2019}\le1+\frac{1}{2020}=\frac{2021}{2020}\)

Dấu = xảy ra khi và chỉ khi \(2019\le x\le2020\)

31 tháng 7 2016

hì^^!!Toán lớp 8

31 tháng 7 2016

camon bạn ạ

 

30 tháng 12 2021

\(C\le10\forall x\)

Dấu '=' xảy ra khi x=5

11 tháng 11 2021
Thôi nhắn chả hiểu luôn
11 tháng 11 2021
Chịu vì nhắn ko hiểu luôn