K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 3 2017

D=\(\frac{2011^{2013}+1}{2011^{2014}+1}\)

 <\(\frac{2011^{2013}+1+2010}{2011^{2014}+1+2010}\)

 <\(\frac{2011^{2013}+2011}{2011^{2014}+2011}\)

<\(\frac{2011\left(2011^{2012}+1\right)}{2011\left(2011^{2013}+1\right)}\)

 <\(\frac{2011^{2012}+1}{2011^{2013}+1}\)

<C

Vậy C>D

19 tháng 3 2017

C>D nhé

20 tháng 7 2018

\(\frac{2014}{2013}+\frac{2013}{2012}+\frac{2012}{2011}+\frac{2011}{2014}\)

\(=1+\frac{1}{2013}+1+\frac{1}{2012}+1+\frac{1}{2011}+1-\frac{3}{2014}\)

\(=4+\left(\frac{1}{2013}+\frac{1}{2012}+\frac{1}{2011}-\frac{1}{2014}-\frac{1}{2014}-\frac{1}{2014}\right)\)

Ta có:

 \(\frac{1}{2011}>\frac{1}{2014}\Rightarrow\frac{1}{2011}-\frac{1}{2014}>0\)

\(\frac{1}{2012}>\frac{1}{2014}\Rightarrow\frac{1}{2012}-\frac{1}{2014}>0\)

\(\frac{1}{2013}>\frac{1}{2014}\Rightarrow\frac{1}{2013}-\frac{1}{2014}>0\)

\(\Rightarrow\frac{1}{2011}-\frac{1}{2014}+\frac{1}{2012}-\frac{1}{2014}+\frac{1}{2013}-\frac{1}{2014}>0\)

\(\Rightarrow4+\left(\frac{1}{2013}+\frac{1}{2012}+\frac{1}{2011}-\frac{1}{2014}-\frac{1}{2014}-\frac{1}{2014}\right)>4\)( thêm 2 vế với 4 )

\(\Rightarrow\frac{2014}{2013}+\frac{2013}{2012}+\frac{2012}{2011}+\frac{2011}{2014}>4\)

Vậy \(\frac{2014}{2013}+\frac{2013}{2012}+\frac{2012}{2011}+\frac{2011}{2014}>4\) 

Tham khảo nhé~

20 tháng 7 2018

Mỗi số hạng của tổng đều nhỏ hơn 1 => Tổng đó nhỏ hơn 4

8 tháng 1 2017

Sửa lại:

Ta có:

\(2011A=\frac{2011^{2013}+2011}{2011^{2013}+1}=1+\frac{2010}{2011^{2013}+1}\)

\(2011B=\frac{2011^{2014}+2011}{2011^{2014}+1}=1+\frac{2010}{2011^{2014}+1}\)

\(1+\frac{2010}{2011^{2013}+1}>1+\frac{2010}{2011^{2014}+1}\) nên 2011A > 2011 B

Từ đó A > B

Vậy A > B

8 tháng 1 2017

Có:

\(2009A=\frac{2011^{2013}+2011}{2011^{2013}+1}=1+\frac{2010}{2011^{2013}+1}\)

\(2011B=\frac{2011^{2014}+2011}{2011^{2014}+1}=1+\frac{2010}{2011^{2014}+1}\)

\(1+\frac{2010}{2011^{2013}+1}>1+\frac{2010}{2011^{2014}+1}\)

\(\Rightarrow2009A>2009B\)

\(\Rightarrow A>B\)

Vậy A > B

30 tháng 11 2014

$\frac{\frac{2010}{2011}}{\frac{2012}{2013}}+\frac{\frac{2011}{2012}}{\frac{2013}{2014}}+\frac{\frac{2012}{2013}}{\frac{2014}{2015}}$

$\frac{\frac{2010}{2011}}{\frac{2012}{2013}}+\frac{\frac{2011}{2012}}{\frac{2013}{2014}}+\frac{\frac{2012}{2013}}{\frac{2014}{2015}}$

$\frac{\frac{2010+2011+2012}{2011+2012+2013}}{\frac{2012+2013+2014}{2013+2014+2015}}$

$\frac{\frac{2010}{2011}+\frac{2011}{2012}+\frac{2012}{2013}}{\frac{2012+2013+2014}{2013+2014+2015}}$

$\frac{\frac{2010+2011+2012}{2011+2012+2013}}{\frac{2012}{2013}+\frac{2013}{2014}+\frac{2014}{2015}}$

28 tháng 2 2015

dễ ợt nhưng éo biết làm thông cảm nha

 

21 tháng 3 2018

Ta có : 

\(\frac{1}{2013}M=\frac{2013^{2012}+2012}{2013^{2012}+2013}=\frac{2013^{2012}+2013}{2013^{2012}+2013}-\frac{1}{2013^{2012}+2013}=1-\frac{1}{2013^{2012}+2013}\)

Lại có : 

\(\frac{1}{2013}N=\frac{2013^{2011}+2012}{2013^{2011}+2013}=\frac{2013^{2011}+2013}{2013^{2011}+2013}-\frac{1}{2013^{2011}+2013}=1-\frac{1}{2013^{2011}+2013}\)

Vì \(\frac{1}{2013^{2012}+2013}< \frac{1}{2013^{2011}+2013}\) nên \(M=1-\frac{1}{2013^{2012}}>N=1-\frac{1}{2013^{2011}+2013}\)

Vậy \(M>N\)

Chúc bạn học tốt ~ 

26 tháng 7 2015

Ta có: \(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2010^2}<\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2009.2010}\)

                                                       \(<1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2009}-\frac{1}{2010}\)

                                                       \(<1-\frac{1}{2010}\)

                                                       \(<\frac{2009}{2010}<1\)

=>N<1

3 tháng 3 2019

\(P=\frac{2010}{2011}+\frac{2011}{2012}+\frac{2012}{2013}\)

\(\Rightarrow P>\frac{2012}{2013}+\frac{2012}{2013}+\frac{2012}{2013}\)

\(P>\frac{4036}{2013}>1\)(1)

\(Q=\frac{2010+2011+2012}{2011+2012+2013}=\frac{6033}{6036}< 1\)(2)

\(Q< 1;P>1\Rightarrow P>Q\)

3 tháng 3 2019

Câu hỏi của Son Goku - Toán lớp 6 - Học toán với OnlineMath

Em tham khảo bài bạn Huy nhé!