K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 8 2021

d) Tính các góc của hình thang ABCD nếu biết ˆABC−ˆADC=80

 

17 tháng 8 2021

giúp mình giải câu d thôi cũng đc

a) Xét ΔADE vuông tại E và ΔBCF vuông tại F có 

AD=BC(ABCD là hình thang cân)

\(\widehat{ADE}=\widehat{BCF}\)(ABCD là hình thang cân)

Do đó: ΔADE=ΔBCF(Cạnh huyền-góc nhọn)

Suy ra: DE=CF(Hai cạnh tương ứng)

b) Xét ΔADB và ΔBCA có 

AD=BC(ABCD là hình thang cân)

AB chung

DB=CA(ABCD là hình thang cân)

Do đó: ΔADB=ΔBCA(c-c-c)

Suy ra: \(\widehat{DBA}=\widehat{CAB}\)(hai góc tương ứng)

hay \(\widehat{IAB}=\widehat{IBA}\)

Xét ΔIAB có \(\widehat{IAB}=\widehat{IBA}\)(cmt)

nên ΔIAB cân tại I(Định lí đảo của tam giác cân)

Suy ra: IA=IB

 

c) Ta có: \(\widehat{OAB}=\widehat{ODC}\)(hai góc đồng vị, AB//CD)

\(\widehat{OBA}=\widehat{OCD}\)(hai góc đồng vị, AB//CD)

mà \(\widehat{ODC}=\widehat{OCD}\)(ABCD là hình thang cân)

nên \(\widehat{OAB}=\widehat{OBA}\)

Xét ΔOAB có \(\widehat{OAB}=\widehat{OBA}\)(cmt)

nên ΔOAB cân tại O(Định lí đảo của tam giác cân)

Suy ra: OA=OB

Ta có: OA+AD=OD(A nằm giữa O và D)

OB+BC=OC(B nằm giữa O và C)

mà OA=OB(cmt)

và AD=BC(ABCD là hình thang cân)

nên OD=OC

Ta có: IA+IC=AC(I nằm giữa A và C)

IB+ID=BD(I nằm giữa B và D)

mà IA=IB(cmt)

và AC=BD(cmt)

nên IC=ID

Ta có: OA=OB(cmt)

nên O nằm trên đường trung trực của AB(1)

Ta có: IA=IB(cmt)

nên I nằm trên đường trung trực của AB(2)

Ta có: OD=OC(cmt)

nên O nằm trên đường trung trực của DC(3)

Ta có: ID=IC(cmt)

nên I nằm trên đường trung trực của DC(4)

Từ (1) và (2) suy ra OI là đường trung trực của AB

Từ (3) và (4) suy ra OI là đường trung trực của DC

a: góc OAB=góc ADC

góc OBA=góc BCD

mà góc ADC=góc BCD

nên góc OAB=góc OBA

=>OA=OB

OA+AD=OD

OB+BC=OC

mà OA=OB và AD=BC

nên OD=OC

b: Xét ΔABD và ΔBAC có

AB chung

BD=AC

AD=BC

=>ΔABD=ΔBAC

=>góc IAB=góc IBA

=>IA=IB 

=>IC=ID

OA=OB và IA=IB

=>OI là trung trực của AB

OC=OD

IC=ID

=>OI là trung trực của CD

a: Xét ΔOAN và ΔOCK có

góc OAN=góc OCK

góc AON=góc COK

Do đó: ΔOAN đồng dạng với ΔOCK

=>OA/OC=NA/CK

Xét ΔNBO và ΔKDO có

góc NBO=góc KDO

góc BON=góc DOK

Do đo: ΔNBO đồng dạng với ΔKDO

=>OB/OD=BN/KD

OA/OC=NA/CK

mà OB/OD=OA/OC

nên BN/KD=NA/CK

=>BN*CK=KD*NA

b: Xét ΔNDK có AN//DK

nên AN/DK=MN/MK

Xét ΔMKC có BN//KC

nên BN/KC=MN/MK

=>AN/DK=BN/DC

mà NA/CK=BN/KD

nên DK/DC=CK/KD=1

=>DK=KC

=>K là trung điểm của CD

24 tháng 4 2017

a, xét tam giác NPA và tam giác CBP có

AP=PB ; goc APN= goc CPB ; goc PAN = goc PBC (ND//BC)

==> tam giác APN = tam giác BPC ( g.c.g)

b. vì ÁP//DC ==> tam giác NPA đồng dạng với NCD 

mà tam giác NPA đồng dạng với tam giác CPB 

==> tam giác CPB đồng dạng với tam giác NCD

24 tháng 4 2017

N là giao của AD và CP ak

7 tháng 1 2017

Giải bài 4 trang 132 SGK Toán 8 Tập 2 | Giải toán lớp 8

ABCD là hình bình hành ⇒ AB = CD.

M là trung điểm AB ⇒ AM = MB = AB/2.

N là trung điểm CD ⇒ CN = DN = CD/2.

⇒ AM = MB = CN = DN.

+ Tứ giác BMDN có: BM // DN và BM = DN

⇒ BMDN là hình bình hành

⇒ DM // BN hay ME // NK

+ Tứ giác AMCN có: AM // NC, AM = NC

⇒ AMCN là hình bình hành

⇒ AN // CM hay EN // MK.

+ Tứ giác MENK có: ME // NK và NE // MK

⇒ MENK là hình bình hành.

a) MENK là hình thoi

⇔ MN ⊥ EK.

⇔ CD ⊥ AD (Vì EK // CD và MN // AD)

⇔ ABCD là hình chữ nhật.

b) MENK là hình chữ nhật

⇔ MN = EK

Mà MN = BC; Giải bài 4 trang 132 SGK Toán 8 Tập 2 | Giải toán lớp 8 (vì tam giác MCD có E và K lần lượt là trung điểm MD, MC nên EK là đường trung bình của tam giác MCD).

Giải bài 4 trang 132 SGK Toán 8 Tập 2 | Giải toán lớp 8

⇔ CD = 2.BC.

c) MENK là hình vuông

⇔ MENK là hình thoi và đồng thời là hình chữ nhật

⇔ ABCD là hình chữ nhật và có CD = 2.BC.