Cho lục giác đều ABCDEF. Chứng minh:
a) tam giác ACE là tam giác đều
b) tứ giác ABDE là hình chữ nhật
c) AD,BE và CF đồng quy tại trung điểm I của mỗi đường
d) tam giác AIB là tam giác đều
e) AD vuông góc với EC
f) tứ giác AICB là hình thoi
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔCAB có CD/CB=CE/CA
nên DE//AB và DE=AB/2
=>DF//AB và DF=AB
=>ABDF là hình bình hành
Xét tứ giác ABDE có DE//AB
nên ABDE là hình thang
b: Xét tứ giác ADCF có
E là trug điểm chung của AC và DF
góc ADC=90 độ
Do đo: ADCF là hình chữ nhật
c: Vì ABDF là hình bình hành
nên AD cắt BF tại trung điểm của mỗi đường
=>B,I,F thẳng hàng
a) Xét ΔABC vuông tại A và ΔHAC vuông tại H có
\(\widehat{C}\) chung
Do đó: ΔABC\(\sim\)ΔHAC(g-g)
b) Xét tứ giác AKHI có
\(\widehat{KAI}=90^0\)
\(\widehat{HIA}=90^0\)
\(\widehat{HKA}=90^0\)
Do đó: AKHI là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)
c) Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHB vuông tại H có HI là đường cao ứng với cạnh huyền AB, ta được:
\(AI\cdot AB=AH^2\)(1)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHC vuông tại H có HK là đường cao ứng với cạnh huyền AC, ta được:
\(AK\cdot AC=AH^2\)(2)
Từ (1) và (2) suy ra \(AI\cdot AB=AK\cdot AC\)
a: Xét tứ giác BFEC có
góc BFC=góc BEC=90 độ
=>BFEC nội tiếp
=>góc BFE+góc BCE=180 độ
=>góc AFE=góc ACB
mà góc FAE chung
nên ΔAFE đồng dạng với ΔACB
b: Xét tứ giác BFHD có
góc BFH+goc BDH=180 độ
=>BFHD là tứ giác nội tiếp
Xét tứ giác CEHD có
góc CEH+góc CDH=180 độ
=>CEHD là tứ giác nội tiếp
góc FDH=góc FBH
góc EDH=góc ACF
mà góc FBH=góc ACF
nên góc FDH=góc EDH
=>DH là phân giác của góc FDE(1)
góc EFH=góc CAD
góc DFH=góc EBC
mà góc CAD=góc EBC
nên góc EFH=góc DFH
=>FH là phân giác của góc EFD(2)
Từ (1), (2) suy ra H là giao của ba đường phân giác của ΔDEF
c: Xét ΔBHD vuông tại D và ΔBCE vuông tại E có
góc HBD chung
=>ΔBHD đồg dạng với ΔBCE
=>BH/BC=BD/BE
=>BH*BE=BC*BD
Xét ΔCDH vuông tại Dvà ΔCFB vuông tại F có
góc FCB chung
=>ΔCDH đồng dạng với ΔCFB
=>CD/CF=CH/CB
=>CD*CB=CH*CF
=>BH*BE+CH*CF=BC^2
Đáp án B
Góc giữa mặt phẳng (ABC) và (DEF) bằng với góc giữa 2 mặt phẳng (ABC) và (BIK) trong đó mặt phẳng (BIK) song song với (DEF)
Vẽ đường cao BH của tam giác đều ABC, suy ra H là trung điểm AC và BH = a 3 2
Gọi M là trung điểm IK. Khi đó HM là đường trung bình của hình chữ nhật AIKC
HM =AI = a 2 và HM song song với AI
Trong mặt phẳng (BHM) vẽ MG ⊥ BH tại G
Do MG ⊥ BH và AC ⊥ MG(AC ⊥ (BHM)) nên MG ⊥ (ABC) (2)
Từ (1) và (2) => góc giữa 2 mặt phẳng (ABC) và (BKI) bằng góc giữa MG với HM, tức góc HMG
Trong ∆ B H M vuông tại M, ta có:
Vẽ đường cao BH của tam giác đều ABC, suy ra H là trung điểm AC và B H = 3 2 a
Gọi M là trung điểm IK. Khi đó HM là đường trung bình của hình chữ nhật AIKC
Chọn B
a: Xét ΔAIB vuông tại I và ΔAEC vuông tại E có
góc IAB chung
=>ΔAIB đồng dạng vơi ΔAEC
b: ΔAIB đồng dạng với ΔAEC
=>AI/AE=AB/AC
=>AI/AB=AE/AC
=>ΔAIE đồng dạng với ΔABC và AB*AE=AI*AC
c: Xét ΔFAC vuông tại F và ΔICB vuông tại I có
góc FAC=góc ICB
=>ΔFAC đồng dạng với ΔICB
=>AF/IC=CA/CB
=>AF*CB=CA*IC
=>AB*AE+AF*CB=AC^2
Gọi M là trung điểm BC ; N là điểm đối xứng với H qua M.
M là trung điểm của BC và HN nên BNCH là hình bình hành
\(\Rightarrow NC//BH\)
Mà \(BH\perp AC\Rightarrow NC\perp AC\)hay AN là đường kính của đường tròn ( O )
Dễ thấy OM là đường trung bình \(\Delta AHN\) suy ra \(OM=\frac{1}{2}AH\)
M là trung điểm BC nên OM \(\perp\)BC
Xét \(\Delta AHG\)và \(\Delta OGM\)có :
\(\widehat{HAG}=\widehat{GMO}\); \(\frac{GM}{GA}=\frac{OM}{HA}=\frac{1}{2}\)
\(\Rightarrow\Delta AGH~\Delta MOG\left(c.g.c\right)\Rightarrow\widehat{AGH}=\widehat{MGO}\)hay H,G,O thẳng hàng
gọi E,F,T lần lượt là trung điểm của AB,CD,BD
Đường thẳng ME cắt NF tại S
Vì AC = BD \(\Rightarrow EQFP\)là hình thoi \(\Rightarrow EF\perp PQ\)( 1 )
Xét \(\Delta TPQ\)và \(\Delta SEF\)có : \(ME\perp AB,TP//AB\)
Tương tự , \(NF\perp CD;\)\(TQ//CD\)
\(\Rightarrow\Delta TPQ~\Delta SEF\)( Góc có cạnh tương ứng vuông góc )
\(\Rightarrow\frac{SE}{SF}=\frac{TP}{TQ}=\frac{AB}{CD}\)
Mặt khác : \(\Delta MAB~\Delta NCD\Rightarrow\frac{AB}{CD}=\frac{ME}{NF}\)( tỉ số đường cao = tỉ số đồng dạng )
Suy ra : \(\frac{ME}{NF}=\frac{SE}{SF}\)\(\Rightarrow EF//MN\)( 2 )
Từ ( 1 ) và ( 2 ) suy ra \(MN\perp PQ\)