tìm các cặp số tự nhiên(x,y) thỏa mãn:2xy-5x+y=10
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
PT\(\Leftrightarrow\)25+y2=17-2xy
\(\Leftrightarrow\)y(y-2x)=-8
\(\Leftrightarrow\)y\(\in\)Ư(-8)
Ta có bảng
y | 1 | -1 | 2 | -2 | 4 | -4 | 8 | -8 |
y-2x | -8 | 8 | -4 | 4 | -2 | 2 | -1 | 1 |
x | 4,5 | -4,5 | 3 | -3 | 3 | -3 | 4,5 | -4,5 |
Vì x,y\(\in\)Z\(\Rightarrow\)(x;y) là (2;3);(-2;-3);(4;3);(-4;-3)
Giải:
b) \(\left(2x+1\right).\left(y-3\right)=10\)
\(\Rightarrow\left(2x+1\right)\) và \(\left(y-3\right)\inƯ\left(10\right)=\left\{1;2;5;10\right\}\)
Vì \(\left(2x+1\right)\) là số lẻ nên \(\left(2x+1\right)\in\left\{1;5\right\}\)
Ta có bảng giá trị:
2x+1 | 1 | 5 |
y-3 | 5 | 1 |
x | 1 | 2 |
y | 8 | 4 |
Vậy \(\left(x;y\right)=\left\{\left(1;8\right);\left(2;4\right)\right\}\)
c) \(2xy-x+2y=13\)
\(\Rightarrow x.\left(2y-1\right)+\left(2y-1\right)=12\)
\(\Rightarrow\left(x+1\right).\left(2y-1\right)=12\)
\(\Rightarrow\left(x+1\right)\) và \(\left(2y-1\right)\inƯ\left(12\right)=\left\{1;2;3;4;6;12\right\}\)
Vì \(\left(2y-1\right)\) là số lẻ nên \(\left(2y-1\right)\in\left\{1;3\right\}\)
Ta có bảng giá trị:
x+1 | 12 | 4 |
2y-1 | 1 | 3 |
x | 11 | 3 |
y | 1 | 2 |
Vậy \(\left(x;y\right)=\left\{\left(11;1\right);\left(3;2\right)\right\}\)
Giải: (tiếp)
d) \(6xy-9x-4y+5=0\)
\(\Rightarrow3x.\left(2y-3\right)-4y=-5\)
\(\Rightarrow3x.\left(2y-3\right)-4y+6=1\)
\(\Rightarrow3x.\left(2y-3\right)-2.\left(2y-3\right)=1\)
\(\Rightarrow\left(3x-2\right).\left(2y-3\right)=1\)
\(\Rightarrow\left(3x-2\right)\) và \(\left(2y-3\right)\inƯ\left(1\right)=\left\{1\right\}\)
Ta có bảng giá trị:
3x-2 | 1 |
2y-3 | 1 |
x | 1 |
y | 2 |
Vậy \(\left(x;y\right)=\left\{\left(1;2\right)\right\}\)
e) \(2xy-6x+y=13\)
\(\Rightarrow2x.\left(y-3\right)+\left(y-3\right)=10\)
\(\Rightarrow\left(2x+1\right).\left(y-3\right)=10\)
Còn lại câu e nó giống hệt câu b nha nên câu lm giống nó là đc!
f) \(2xy-5x+2y=148\)
\(\Rightarrow2y.\left(x+1\right)-5x-5=143\)
\(\Rightarrow2y.\left(x+1\right)-5.\left(x+1\right)=143\)
\(\Rightarrow\left(x+1\right).\left(2y-5\right)=143\)
\(\Rightarrow\left(x+1\right)\) và \(\left(2y-5\right)\inƯ\left(143\right)=\left\{1;11;13;143\right\}\)
Ta có bảng giá trị:
x+1 | 1 | 11 | 13 | 143 |
2y-5 | 143 | 13 | 11 | 1 |
x | 0 | 10 | 12 | 142 |
y | 74 | 9 | 8 | 3 |
Vậy \(\left(x;y\right)=\left\{\left(0;74\right);\left(10;9\right);\left(12;8\right);\left(142;3\right)\right\}\)
Chúc bạn học tốt! (Trời mk mất gần 1 tiếng bài này! )
:2xy-5x+y=10
\(\Leftrightarrow4xy-10x+2y=20\)
\(\Leftrightarrow2y\left(2x+1\right)-\left(10x+5\right)=20-5\)
\(\Leftrightarrow2y\left(2x+1\right)-\left(2.5.x+5\right)=15\)
\(\Leftrightarrow2y\left(2x+1\right)-5\left(2x+1\right)=15\)
\(\Leftrightarrow\left(2x+1\right)\left(2y-5\right)=15\)
\(\Rightarrow15⋮\left(2x+1\right);15⋮\left(2y-5\right)\)
\(hay2x+1;2y-5\inƯ\left(15\right)\)
\(Ư\left(15\right)=\left\{\pm1;\pm3;\pm5;\pm15\right\}\)
Vì x;y đều là số lẻ => \(2x+1;2y-5\notin\left\{-1;-3;-5;-15\right\}\)
=> Ta có bảng sau
2x+1 1 3 5 15
2y-5 15 5 3 1
x 0 1 2 7
y 10 5 4 3
vậy \(\hept{\begin{cases}x=0\\y=10\end{cases}};\hept{\begin{cases}x=1\\y=5\end{cases}};\hept{\begin{cases}x=2\\y=4\end{cases}};\hept{\begin{cases}x=7\\y=3\end{cases}}\)
ở hàng thứ 10 là vì x;y đều là số tự nhiên nha bạn