Tìm giá trị nguyên của n để A chia hết cho 5
A = x^2y^3 + 2x^3y^2 - x^2y^2 và B = x^n.y^n
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x = 1 và y = -1 thì mới ra nhé :V
\(A=3xy^2x^3\cdot\left(-x^2y^3\right)^2=3xy^2x^3\cdot x^4y^6=3\left(xx^3x^4\right)\left(y^2y^6\right)=3x^8y^8\)
Hệ số : 3
Biến : x8y8
Thay x = 1 ; y = -1 vào A ta được :
\(3\cdot1^8\cdot\left(-1\right)^8=3\cdot1\cdot1=3\)
Vậy giá trị của A = 3 khi x = 1 ; y = -1
\(B=\left(\frac{1}{2}x^2y^3\right)^2\cdot\left(-2x^3y\right)=\frac{1}{4}x^4y^6\cdot\left(-2x^3y\right)=\left(\frac{1}{4}\cdot-2\right)\left(x^4x^3\right)\left(y^6y\right)=\frac{-1}{2}x^7y^7\)
Hệ số : -1/2
Biến : x7y7
Thay x = 1 ; y = -1 vào B ta được : \(-\frac{1}{2}\cdot1^7\cdot\left(-1\right)^7=-\frac{1}{2}\cdot1\cdot\left(-1\right)=\frac{1}{2}\)
Vậy giá trị của B = 1/2 khi x = 1 ; y = -1
c) Ta có: \(P=x^3+y^3+6xy\)
\(=\left(x+y\right)^3-3xy\left(x+y\right)+6xy\)
\(=\left(x+y\right)^3-3xy\left(x+y-2\right)\)
\(=2^3=8\)
Bài 4 :
Thay x=y+5 , ta có :
a ) ( y+5)*(y5+2)+y*(y-2)-2y*(y+5)+65
=(y+5)*(y+7)+y^2-2y-2y^2-10y+65
=y^2+7y+5y+35-y^2-2y-2y^2-10y+65
= 100
Bài 5 :
A = 15x-23y
B = 2x-3y
Ta có : A-B
= ( 15x -23y)-(2x-3y)
=15x-23y-2x-3y
=13x-26y
=13x*(x-2y) chia hết cho 13
=> Nếu A chia hết cho 13 thì B chia hết cho 13 và ngược lại
Ta có: \(A=x^2y^4+2x^3y^3\)
Để A chia hết cho \(B=x^ny^3\) thì:
\(\left\{{}\begin{matrix}2x^3y^3⋮x^ny^3\\x^2y^4⋮x^ny^3\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x^3⋮x^n\\x^2⋮x^n\end{matrix}\right.\)
\(\Rightarrow x^0\le x^n\le x^2\)
\(\Rightarrow0\le n\le2\)