K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
23 tháng 12 2022

Ta có:

\(\left|x+3\right|+\left|x-1\right|=\left|x+3\right|+\left|1-x\right|\ge\left|x+3+1-x\right|=4\)

\(3-y^2-2y=4-\left(y^2+2y+1\right)=4-\left(y+1\right)^2\le4\)

\(\Rightarrow\left|x+3\right|+\left|x-1\right|\ge3-y^2-2y\)

Đẳng thức xảy ra khi và chỉ khi:

\(\left\{{}\begin{matrix}\left(x+3\right)\left(1-x\right)\ge0\\y+2=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}-3\le x\le1\\y=-2\end{matrix}\right.\)

Các cặp số nguyên thỏa mãn là:

\(\left(x;y\right)=\left(-3;-2\right);\left(-2;-2\right);\left(-1;-2\right);\left(0;-2\right);\left(1;-2\right)\)

AH
Akai Haruma
Giáo viên
6 tháng 7

Với $x,y$ là số thực thì không tìm được giá trị $x,y$ cụ thể bạn nhé. Bạn xem lại đề.

7 tháng 12 2020

Đặt \(S=x+2y\Rightarrow x=S-2y\)

Xét 2 trường hợp :

TH1: \(x^2+y^2>1\)từ giả thiết \(\Rightarrow x^2+y^2\le x+y\Leftrightarrow\left(S-2y\right)^2+y^2\le S-y\Rightarrow5y^2-\left(4S-1\right)y+S^2-S\le0\left(1\right)\)

Coi (1) là bất pt bậc 2 đối với ẩn y 

\(\Rightarrow\Delta=\left(4S-1\right)^2-20\left(S^2-S\right)\ge0\Rightarrow4S^2-12S-1\le0\Rightarrow S\le\frac{3+\sqrt{10}}{2}\)

Đẳng thức xảy ra khi \(x=\frac{5+\sqrt{10}}{2}\) thỏa mãn \(x^2+y^2>1\)

Vậy \(S_{m\text{ax}}=\frac{3+\sqrt{10}}{2}\)

TH2: Nếu \(x^2+y^2< 1\Rightarrow x+y\le x^2+y^2\)\(\Rightarrow S=x+2y\le x^2+y^2+y< 1+1=2\Rightarrow S< \frac{3+\sqrt{10}}{2}\)

Vậy S lớn nhất là \(\frac{3+\sqrt{10}}{2}\)khi \(x=\frac{5+2\sqrt{10}}{10};y=\frac{5+2\sqrt{10}}{10}\)

2 tháng 12 2017

\(PT\Leftrightarrow x^2=2y^2+1\). Vì x2 là số chính phương lẻ.

\(\Rightarrow x^2=2y^2+1\equiv1\left(mod4\right)\)mà y số nguyên.

\(\Rightarrow y=2,x=3\)

3 tháng 12 2017

Lê Minh Tú cảm ơn bạn nhiều nhé !