K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 11 2016

= 5 cm nhá bạn yêu dấu ơi, còn cách làm thì để mình tìm cách giải thích cho, cái này mình hơi tệ leuleu, thông cảm, mình tìm cách giải thích cho bạn sau

26 tháng 11 2016

cảm ơn bạn thân yêu nhưng kết qur chính xác phải là 4,8 cm nhé!

 

27 tháng 12 2015

+) Ta có: AB vừa là đường cao vừa là đường trung tuyến

=> tam giác ADH cân tại A

=> AH = AD (1)

AC vừa là đường cao vừa là đường trung tuyến

=> tam giác AEH cân tại A

=> AH = AE (2)

Từ (1) và (2) => AH = AD = AE

+) Có: \(BC=\sqrt{AB^2+AC^2}=\sqrt{3^2+4^2}=5cm\)

AH.BC = AB.AC

=> \(AH=\frac{AB.AC}{BC}=\frac{3.4}{5}=\frac{12}{5}=2,4cm\)

+) Có: DE = AD + AE = AH + AH = 2AH = 2.2,4 = 4,8cm

Vậy DE = 4,8cm

a: Ta có: H và M đối xứng nhau qua AB

nên AB là đường trung trực của HM

Suy ra: AB\(\perp\)HM và E là trung điểm của HM

Ta có: H và N đối xứng nhau qua AC

nên AC là đường trung trực của HN

Suy ra: AC\(\perp\)HN tại F và F là trung điểm của NH

Xét tứ giác AEHF có

\(\widehat{FAE}=\widehat{AEH}=\widehat{AFH}=90^0\)

Do đó: AEHF là hình chữ nhật

16 tháng 3 2020

Ôn tập : Tứ giác

Ôn tập : Tứ giác

Tham khảo H

16 tháng 3 2020

Bạn ơi

Trên đây k đăng hình đc

Bạn vào thống kê hỏi đáp của mk xem đc k nhá!

a: BC=căn 3^2+4^2=5cm

AI là phân giác
=>IB/AB=IC/AC

=>IB/3=IC/4

mà IB+IC=5

nên IB/3=IC/4=5/(IB+IC)=5/7

=>IB=15/7cm; IC=20/7cm

b: AH=3*4/5=2,4cm

BH=AB^2/BC=3^2/5=1,8cm

3 tháng 5 2022

a) -Sửa đề: \(AC=4cm\) (sửa lại cho số được đẹp)

-△ABC vuông tại A có: \(BC^2=AB^2+AC^2\).

\(\Rightarrow BC=\sqrt{AB^2+AC^2}=\sqrt{3^2+4^2}=5\left(cm\right)\)

△ACH và △BCA có: \(\widehat{AHC}=\widehat{BAC};\widehat{BCA}\) là góc chung.

\(\Rightarrow\)△ACH∼△BCA (g-g) 

\(\Rightarrow\dfrac{CH}{CA}=\dfrac{AC}{BC}\Rightarrow CH=\dfrac{AC^2}{BC}=\dfrac{4^2}{5}=3,2\left(cm\right)\).

△ABC có: IH//BC (cùng vuông góc AB).

\(\Rightarrow\dfrac{AI}{AB}=\dfrac{CH}{CB}\Rightarrow AI=\dfrac{AB.CH}{CB}=\dfrac{3.3,2}{5}=1,92\left(cm\right)\).

-Tứ giác AIHK có: \(\widehat{IAK}=\widehat{AIH}=\widehat{AKH}=90^0\).

\(\Rightarrow\)AIHK là hình chữ nhật \(\Rightarrow\widehat{AKI}=\widehat{CAH}\).

\(\widehat{CAH}=90^0-\widehat{ACB}=\widehat{ABC}\Rightarrow\widehat{AKI}=\widehat{ABC}\).

-△AIK và △ACB có: \(\widehat{AKI}=\widehat{ABC};\widehat{BAC}\) là góc chung.

\(\Rightarrow\)△AIK∼△ACB (g-g).

\(\Rightarrow\dfrac{S_{AIK}}{S_{ACB}}=\left(\dfrac{AI}{AC}\right)^2=\left(\dfrac{1,92}{4}\right)^2=0,2304\)

\(\Rightarrow S_{AIK}=0,2304.S_{ABC}=0,2304.\dfrac{1}{2}.3.4=1,3824\left(cm^2\right)\)

3 tháng 5 2022

b) *CM cắt AH tại D, BM cắt AC tại F.

AH⊥BC tại H, BM⊥BC tại B \(\Rightarrow\)AH//BM.

E đối xứng với H qua AB \(\Rightarrow\widehat{HAB}=\widehat{BAM}\)mà \(\widehat{HAB}=\widehat{ABM}\).

\(\Rightarrow\)\(\widehat{ABM}=\widehat{BAM}\) \(\Rightarrow\)△ABM cân tại M \(\Rightarrow AM=BM\)

\(\widehat{ABM}=\widehat{BAM}\Rightarrow\widehat{MAF}=\widehat{MFA}\) \(\Rightarrow\)△AMF cân tại M \(\Rightarrow AM=FM\).

\(\Rightarrow BM=FM\) nên M là trung điểm BC.

-△BCM có: DH//BM \(\Rightarrow\dfrac{DH}{BM}=\dfrac{DC}{MC}\).

-△FCM có: AD//FM \(\Rightarrow\dfrac{DA}{FM}=\dfrac{DC}{MC}=\dfrac{DH}{BM}\Rightarrow DA=DH\)

\(\Rightarrow\)D là trung điểm AH mà AIHK là hình chữ nhật.

\(\Rightarrow\)D là trung điểm IK.

-Vậy IK, AH, CM đồng quy tại D.