K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 11 2020

ĐK : \(x\ne0\)

Với \(3x-1-\frac{x-1}{4x}=\sqrt{3x+1}\), ta có :

\(3x-1-\frac{x-1}{4x}=\sqrt{3x^2-6x+1^2}=\sqrt{\left(3x-1\right)^2}\)

Thỏa mãn ĐK : \(3x-1=\sqrt{3x+1}\)

Với x là SC thì 3x - 1 và 3x + 1 là SL , với x là SL thì 3x - 1 và 3x + 1 là SC .

Miễn sao 3x - 1 và 3x + 1 cùng một x .

=> Xảy ra khi \(3x-1=\frac{\left(3x+1\right)}{2}\)

\(\Rightarrow x=1\)( min = max )

4 tháng 9 2016

Ptrình này vô nghiệm bn ạ

31 tháng 8 2016

ko biết

31 tháng 8 2016

Bài quá dễ tự làm đi 

k mình mình giải cho

18 tháng 9 2016

Cái trước bị nhầm !!! Cái này mới đúng ! ^^

Điều kiện xác định \(\frac{\sqrt{3}}{2}\le x\le1\)

\(4x^3-\sqrt{1-x^2}-3x=0\)

\(\Leftrightarrow\left(-4x+4x^3\right)-\sqrt{1-x^2}+x=0\Leftrightarrow-4x\left(1-x^2\right)-\sqrt{1-x^2}+x=0\) . 

Đặt \(t=\sqrt{1-x^2},t\ge0\) , pt trở thành \(-4x.t^2-t+x=0\)

Xét \(\Delta=1+16x^2>0\) => PT có hai nghiệm phân biệt .

TH1. \(t=\frac{1-\sqrt{1+16x^2}}{-8x}\) \(\Leftrightarrow\sqrt{1-x^2}=\frac{1-\sqrt{1+16x^2}}{-8x}\Leftrightarrow-8x\sqrt{1-x^2}=1-\sqrt{1+16x^2}\)

TH2. \(t=\frac{1+\sqrt{1+16x^2}}{-8x}\Leftrightarrow\sqrt{1-x^2}=\frac{1+\sqrt{1+16x^2}}{-8x}\Leftrightarrow-8x\sqrt{1-x^2}=1+\sqrt{1+16x^2}\)

Dễ dàng giải được các pt trên.

 

18 tháng 9 2016

giải = lượng giác hóa

30 tháng 1 2019

\(ĐKXĐ:\hept{\begin{cases}\frac{1-2x}{x}\ge0\\x\ne0\end{cases}\Leftrightarrow\hept{\begin{cases}x\left(1-2x\right)\ge0\\x\ne0\end{cases}\Leftrightarrow}}0< x\le\frac{1}{2}\)

Do \(x\ne0\)nên pt đã cho trở thành

\(\sqrt{\frac{1}{x}-2}=\frac{\frac{3}{x}+1}{1+\frac{1}{x^2}}\)

Đặt \(\frac{1}{x}=a\)kết hợp ĐKXĐ được \(a>2\)

Thu được pt \(\sqrt{a-2}=\frac{3a+1}{1+a^2}\)

\(\Leftrightarrow\left(1+a^2\right)\sqrt{a-2}=3a+1\)

\(\Leftrightarrow\left(1+a^2\right)\left(\sqrt{a-2}-1\right)=3a+1-a^2-1\)

\(\Leftrightarrow\left(a^2+1\right).\frac{a-3}{\sqrt{a-2}+1}=-a^2+3a\)

\(\Leftrightarrow\left(a-3\right)\left[\frac{a^2+1}{\sqrt{a-2}+1}+a\right]=0\)

Vì a > 2 nên [...] > 0 

Nên a = 3

<=> x = 1/3 

ĐK \(x\ge\frac{-10}{3}\)

Đặt \(\sqrt{3x+1}=a\)

\(PT\Leftrightarrow\frac{3}{\sqrt{a^2+9}}=a-1\)

\(\Leftrightarrow\sqrt{a^2+9}=\frac{3}{a-1}\Leftrightarrow a^2+9=\frac{9}{\left(a-1\right)^2}\)

\(\Leftrightarrow\left(a^2+9\right)\left(a-1\right)^2=9\)                 (hình như đề sai hay thiếu phải không)????????????????