Cho tam giac ABC co 3 duong cao AD,BE,CF dong quy tai H . M,M,P lan luot la cac diem doi xung cua H qua BC, AC va AB. Tinh AM/AD+BN/BE+CP/CF= ?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(BC=\sqrt{9^2+6^2}=3\sqrt{13}\left(cm\right)\)
\(AH=\dfrac{AB\cdot AC}{BC}=\dfrac{6\cdot9}{3\sqrt{13}}=\dfrac{18\sqrt{13}}{13}\left(cm\right)\)
b: Xét ΔEBF vuông tạiE và ΔEDC vuông tại E có
\(\widehat{EBF}=\widehat{EDC}\)
Do đó: ΔEBF\(\sim\)ΔEDC
d: Xét ΔBAD vuông tại A và ΔBED vuông tại E có
BD chung
\(\widehat{ABD}=\widehat{EBD}\)
Do đó: ΔBAD=ΔBED
Suy ra: BA=BE và DA=DE
Xét ΔADF vuông tại A và ΔEDC vuông tại E có
DA=DE
\(\widehat{ADF}=\widehat{EDC}\)
DO đó: ΔADF=ΔEDC
Suy ra: AF=EC
=>BF=BC
=>ΔBFC cân tại B
mà BD là đường phân giác
nên BD la đường cao
a: góc AEH+góc AFH=180 độ
=>AEHF nội tiếp
b: góc AHG=góc BHD=90 độ-góc HBD=góc ACB
góc AGH=1/2*sđ cung AB=góc ACB
=>góc AHG=góc AGH
=>ΔAGH cân tại A
A,
xét \(\Delta ABD\)và \(\Delta ACD\)
CÓ \(\hept{\begin{cases}AB=AC\\chungAD\\BD=DC\end{cases}}\)
SUY RA \(\Delta ABD\)=\(\Delta ACD\) (C.C.C) (1)
=> \(\widehat{BDA}\)=\(\widehat{CDA}\)
MÀ \(\widehat{BDA}\)+\(\widehat{CDA}\)=180
=> \(\widehat{BDA}\)=\(\widehat{CDA}\)=90
B, (1) => BC=DC=1/2 BC=8
ÁP DỤNG ĐỊNH LÍ PITAGO TA CÓ
\(AB^2=AD^2+BD^2\)
=> AD^2=36
=>AD=6
c) Xét tứ giác ACDF có góc AFC = góc ADC = 900 => ACDF nội tiếp
tam giác BDF và tam giác BAC có góc B chung ; góc BDF = góc BAC (ACDF nội tiếp) => tg BDF đồng dạng tg BAC
=> BD/BA = DF/AC, mà AC = 2DF hay DF/AC = 1/2 => BD/BA = 1/2
trog tg vuông BDA có cos B = BD/BA = 1/2 => góc B = 600 mà tg BCF vuông tại F => góc BCF = 300 hay góc HCD = 300 (1)
Xét tứ giác DHEC có góc HDC = góc HEC = 900 => DHEC nội tiếp => góc HCD = góc HED
mà góc FEB = góc HCD (BCEF nội tiếp) => góc FEB = góc HED. Vậy góc FED = 2.góc HCD = 600
( Làm tắt bạn tự hiểu nhé )
Gọi O là giao diểm của MK và IQ
+) Chứng minh: IMQK là hình chữ nhật:
IM là đường trung bình tam giác AHB
=> IM // HB (1)
QK là đường trung bình tam giác CBH
=> QK// HB (2)
Từ (1) và (2) => IM// QK
=> IMQK là hình bình hành
Ta có: \(\hept{\begin{cases}KQ\perp AC\left(KQ//BE;BE\perp AC\right)\\MQ//AC\end{cases}}\Rightarrow KQ\perp MQ\)
=> IMQK là hình chữ nhật
=> IQ cắt MK tại trung điểm mỗi đường và IQ=MK
Mà O là giao điểm của IQ và MK
=> OI=OM=OK=OQ (3)
CMTT: MNKL là hình chữ nhật
=> OM=ON=OK=OL (4)
+) Chứng minh tam giác vuông có O là trung điểm cạnh huyền
Tam giác MDK vuông tại D có O là trung điểm MK ( do ... là hình chữ nhật í )
=> OM=OK=OD
CMTT vào 2 tam giác IFQ vuông và tam giác ENL vuông
=> OI=OF=OQ (5) ; OE=ON=OL (6)
Từ (3) , (4) , (5) và (6) => 9 điểm I,K,L,D,E,F,M,N,Q cùng thuộc 1 đường tròn
a: Xét tư giác BFEC có
góc BFC=góc BEC=90 độ
=>BFEC là tứ giác nội tiếp
Xét tứ giác CDHE có
góc CDH+góc CEH=180 độ
=>CDHE là tứ giác nội tiếp
b: CDHE là tứ giác nội tiếp
=>gó BED=góc FCB
góc FEH=góc BAD
mà góc FCB=góc BAD
nên góc BED=góc FEB
=>EB là phân giác của góc FED
c: góc IEO=góc IEH+góc OEH
=góc IHE+góc OBE
=góc BHD+góc CBH=90 độ
=>IE là tiếp tuyến của (O)