2 linh alpha, ((- 0, 3) ^ 7, 2 ^ 8)/((0.6) ^ 7)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. π < α < \(\frac{3\pi}{2}\) => cosα <0
Ta có: sin2α + cos2α = 1 => cosα = \(\frac{-\sqrt{51}}{10}\) => tanα = \(\frac{7\sqrt{51}}{51}\)
b. 0 < α < \(\frac{\pi}{2}\) => sinα > 0
Ta có: sin2α + cos2α =1 => sinα = \(\frac{3\sqrt{17}}{13}\) => tanα = \(\frac{3\sqrt{17}}{4}\)
c. \(\frac{\pi}{2}< \alpha< \pi\) => cosα <0 ; sinα > 0
Ta có: \(1+tan^2\alpha=\frac{1}{cos^2\alpha}\) => cosα = \(\frac{-7}{\sqrt{274}}\) => sinα = \(\frac{15}{\sqrt{274}}\)
d. \(\frac{3\pi}{2}< \alpha< 2\pi\) => cosα > 0 ; sinα < 0
Ta có: 1+ cot2α = \(\frac{1}{sin^2\alpha}\)=> sinα = \(\frac{-\sqrt{10}}{10}\) => cos\(\alpha\) = \(\frac{3\sqrt{10}}{10}\)
\(\cot a=\dfrac{1}{3}\)
\(1+\tan^2a=\dfrac{1}{\cos^2a}=1+9=10\)
\(\Leftrightarrow\cos a=\dfrac{\sqrt{10}}{10}\)
\(\Leftrightarrow\sin a=\dfrac{3\sqrt{10}}{10}\)
\(A=5\cdot\dfrac{3\sqrt{10}}{10}-7\cdot\dfrac{1}{10}+9\cdot\dfrac{1}{9}=\dfrac{3\sqrt{10}}{2}-\dfrac{7}{10}+1=\dfrac{3+15\sqrt{10}}{10}\)
a) Do \(\pi< \alpha< \dfrac{3\pi}{2}\) nên \(sin\alpha< 0;cot\alpha>0;tan\alpha>0\).
Vì vậy: \(sin\alpha=-\sqrt{1-cos^2\alpha}=\dfrac{-\sqrt{15}}{4}\).
\(tan\alpha=\dfrac{sin\alpha}{cos\alpha}=\dfrac{-\sqrt{15}}{4}:\dfrac{-1}{4}=\sqrt{15}\).
\(cot\alpha=\dfrac{1}{tan\alpha}=\dfrac{1}{\sqrt{15}}\).
b) Do \(\dfrac{\pi}{2}< \alpha< \pi\) nên \(cos\alpha< 0;tan\alpha< 0;cot\alpha< 0\).
\(cos\alpha=-\sqrt{1-sin^2\alpha}=-\dfrac{\sqrt{5}}{3}\);
\(tan\alpha=\dfrac{2}{3}:\dfrac{-\sqrt{5}}{3}=\dfrac{-2}{\sqrt{5}}\); \(cot\alpha=1:tan\alpha=\dfrac{-\sqrt{5}}{2}\).
\(VT=\dfrac{-tan\left(\dfrac{\pi}{2}-a\right)cos\left(2\pi-\dfrac{\pi}{2}+a\right)-sin^3\left(4\pi-\dfrac{\pi}{2}-a\right)}{cos\left(\dfrac{\pi}{2}-a\right)tan\left(2\pi-\dfrac{\pi}{2}+a\right)}\)
\(=\dfrac{-cota.sina+sin^3\left(\dfrac{\pi}{2}+a\right)}{sina.\left(-cota\right)}=\dfrac{-cosa+cos^3a}{-cosa}=1-cos^2a=sin^2a\)
\(\left\{{}\begin{matrix}tan\alpha=-\dfrac{7}{3}\\sin^2\alpha+cos^2\alpha=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{sin\alpha}{cos\alpha}=-\dfrac{7}{3}\\sin^2\alpha+cos^2\alpha=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}sin\alpha=-\dfrac{7}{3}cos\alpha\\sin^2\alpha+cos^2\alpha=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}sin\alpha=-\dfrac{7}{3}cos\alpha\\\dfrac{49}{9}cos^2\alpha+cos^2\alpha=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}sin\alpha=-\dfrac{7}{3}cos\alpha\\cos^2\alpha=\dfrac{9}{58}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}sin\alpha=-\dfrac{7}{3}cos\alpha\\cos\alpha=\dfrac{3}{\sqrt{58}}\end{matrix}\right.\) (Vì \(\dfrac{3\pi}{2}< \alpha< 2\pi\Rightarrow cos\alpha>0\))
\(\Leftrightarrow\left\{{}\begin{matrix}sin\alpha=-\dfrac{7}{\sqrt{58}}\\cos\alpha=\dfrac{3}{\sqrt{58}}\end{matrix}\right.\)
\(cot\alpha=\dfrac{1}{tan\alpha}=-\dfrac{3}{7}\)
=43/306:599/105x1473/1820
=1505/61098x1473/1820
=0.01993613035