K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 9 2019

Hình bạn tự vẽ nha!

a) Vì \(\Delta OCD\) đều \(\left(gt\right)\)

=> \(\left\{{}\begin{matrix}OC=OD\\\widehat{OCD}=\widehat{ODC}\end{matrix}\right.\) (tính chất tam giác đều)

+ Hình thang \(ABCD\) có: \(AB\) // \(CD\left(gt\right)\)

=> \(\left\{{}\begin{matrix}\widehat{BAO}=\widehat{OCD}\\\widehat{ABO}=\widehat{ODC}\end{matrix}\right.\) (vì 2 góc so le trong)

\(\widehat{OCD}=\widehat{ODC}\left(cmt\right)\)

=> \(\widehat{BAO}=\widehat{ABO}.\)

=> \(\Delta OAB\) cân tại O.

=> \(OA=OB\) (tính chất tam giác cân)

\(OC=OD\left(cmt\right)\)

=> \(OA+OC=OB+OD\)

=> \(AC=BD.\)

Xét hình thang \(ABCD\) có:

\(AC=BD\left(cmt\right)\)

=> \(ABCD\) là hình thang cân (vì có 2 đường chéo bằng nhau).

Còn câu b) thì mình đang nghĩ nhé.

Chúc bạn học tốt!

22 tháng 9 2021

câu b sai đề r

 

23 tháng 8 2017

a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)

b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)

=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)

c)Đặt x-y=a;y-z=b;z-x=c

a+b+c=x-y-z+z-x=o

đưa về như bài b

d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung

e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)

=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)

17 tháng 9 2017

hình ra số ngu như chó

a: Xét ΔACD và ΔBDC có

AC=BD

AD=BC

CD chung

Do đó: ΔACD=ΔBDC

Suy ra: \(\widehat{ACD}=\widehat{BDC}\)

hay \(\widehat{ODC}=\widehat{OCD}\)

Xét ΔOCD có \(\widehat{ODC}=\widehat{OCD}\)

nên ΔOCD cân tại O

Suy ra: OC=OD

Ta có: OC+OA=AC

OB+OD=BD

mà AC=BD

và OC=OD

nên OA=OB

a) Vì ABCD là hình thang cân 

=> AD = BC

=> ADC = BCD 

=> AC = BD 

=> DAB = CBA 

Xét ∆ADC và ∆BCD ta có : 

AD = BC 

ADC = BCD 

DC chung 

=> ∆ADC = ∆BCD (c.g.c)

=> BDC = ACD ( tương ứng) 

=> ∆DOC cân tại O.

b) Mà DAB + BAE = 180° ( kề bù) 

ABC + ABE = 180° ( kề bù )

Mà DAB = CBA 

=> EAB = EBA 

=> ∆EAB cân tại E 

Gọi giao điểm AB và EO là H

EO và DC là G

Mà AB//CD 

=> BAC = ACD ( so le trong) 

=> ABD = ACD ( so le trong) 

Mà ACD = BDC 

=> CAB = ABD 

=> ∆ABO cân tại O 

=> EO là trung trực và là phân giác ∆AOB 

=> AOH = BOH ( phân giác )

Mà AOH = COG ( đối đỉnh) 

BOH = DOG ( đối đỉnh) 

Mà AOH = BOH ( EO là phân giác) 

=> OG là phân giác DOC 

Mà ∆DOC cân tại O

=> OG là trung trực DC

Hay EO là trung trực DC