cho tam giác ABC:
a, xác định I sao cho vectoIA +3vectoIB - 2vectoIC = 0
b, xác định điểm D sao cho 3vectoDB -2vectoDC = 0
c, cm 3 điểm A I D thằng hàng
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABD và ΔEBD có
BA=BE
\(\widehat{ABD}=\widehat{EBD}\)
BD chung
Do đó: ΔABD=ΔEBD
=>\(\widehat{BAD}=\widehat{BED}\)
mà \(\widehat{BAD}=90^0\)
nên \(\widehat{BED}=90^0\)
b: Xét ΔDAF vuông tại A và ΔDEC vuông tại E có
DA=DE(ΔBAD=ΔBED)
\(\widehat{ADF}=\widehat{EDC}\)(hai góc đối đỉnh)
Do đó: ΔDAF=ΔDEC
=>AF=CE
c: Ta có: ΔDAF=ΔDEC
=>DF=DC
=>D nằm trên đường trung trực của CF(1)
ta có: IF=IC
=>I nằm trên đường trung trực của CF(2)
ta có: BA+AF=BF
BE+EC=BC
mà BA=BE và AF=EC
nên BF=BC
=>B nằm trên đường trung trực của CF(3)
Từ (1),(2),(3) suy ra B,D,I thẳng hàng
a.
Gọi M là trung điểm AB, dựng hình bình hành BCMN \(\Rightarrow\overrightarrow{NM}=\overrightarrow{BC}\)
\(\overrightarrow{IA}+\overrightarrow{IB}+2\overrightarrow{IB}+2\overrightarrow{CI}=\overrightarrow{0}\)
\(\Leftrightarrow\overrightarrow{IA}+\overrightarrow{IB}+2\overrightarrow{CB}=\overrightarrow{0}\Leftrightarrow2\overrightarrow{IM}+2\overrightarrow{CB}=0\)
\(\Leftrightarrow\overrightarrow{IM}=\overrightarrow{BC}\Leftrightarrow I\) trùng N
b.
\(\overrightarrow{DB}+2\overrightarrow{DB}+2\overrightarrow{CD}=\overrightarrow{0}\Leftrightarrow\overrightarrow{DB}+2\overrightarrow{CB}=0\)
\(\Leftrightarrow\overrightarrow{DB}=2\overrightarrow{BC}\Rightarrow D\) là điểm nằm trên tia đối của tia BC sao cho \(BD=2BC\)
c.
\(\overrightarrow{AI}=\overrightarrow{AM}+\overrightarrow{MI}=\frac{1}{2}\overrightarrow{AB}-\overrightarrow{BC}\)
\(\overrightarrow{AD}=\overrightarrow{AB}+\overrightarrow{BD}=\overrightarrow{AB}-2\overrightarrow{BC}=2\left(\frac{1}{2}\overrightarrow{AB}-\overrightarrow{BC}\right)=2\overrightarrow{AI}\)
\(\Rightarrow A;I;D\) thẳng hàng