K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

D
datcoder
CTVVIP
14 tháng 8 2023

a) \(\ln\left(\sqrt{5}+2\right)+\ln\left(\sqrt{5}-2\right)=ln\left(\left(\sqrt{5}+2\right)\left(\sqrt{5}-2\right)\right)=\ln\left(\left(\sqrt{5}\right)^2-2^2\right)=ln\left(5-4\right)=\ln1=\ln e^0=1\)

b) \(\log400-\log4=\log\dfrac{400}{4}=\log100=\log10^{10}=10.\log10=10.1=10\)

c) \(\log_48+\log_412+\log_4\dfrac{32}{2}=\log_4\left(8.12.\dfrac{32}{2}\right)=\log_4\left(1024\right)=\log_44^5=5.\log_44=5.1=5\)

a: \(=ln_2\left[\left(\sqrt{5}+2\right)\left(\sqrt{5}-2\right)\right]=ln1=0\)

b: \(=log\left(\dfrac{400}{4}\right)=log\left(100\right)=10\)

c: \(=log_4\left(8\cdot12\cdot\dfrac{32}{3}\right)=log_4\left(32\cdot32\right)=5\)

a: \(log_{\dfrac{1}{4}}8=log_{2^{-2}}2^3=\dfrac{-3}{2}\cdot log_22=-\dfrac{3}{2}\)

b: \(log_45\cdot log_56\cdot log_68\)

\(=log_45\cdot\dfrac{log_46}{log_45}\cdot\dfrac{log_48}{log_46}\)

\(=log_48=log_{2^2}2^3=\dfrac{3}{2}\)

D
datcoder
CTVVIP
14 tháng 8 2023

a) 

ĐK: \(\left\{{}\begin{matrix}2x-4>0\\x-1>0\end{matrix}\right.\Leftrightarrow x>1\)

\(\log_5\left(2x-4\right)+\log_{\dfrac{1}{5}}\left(x-1\right)=0\\ \Leftrightarrow\log_5\left(2x-4\right)-\log_5\left(x-1\right)=0\\ \Leftrightarrow\log_5\left(\dfrac{2x-4}{x-1}\right)=\log_51\\ \Leftrightarrow\dfrac{2x-4}{x-1}=1\\ \Leftrightarrow2x-4=x-1\\ \Leftrightarrow x=3\left(tm\right)\)

Vậy x = 3.

b) ĐK: x > 0

\(\log_2x+\log_4x=3\\ \Leftrightarrow\log_2x+\dfrac{1}{2}\log_2x=3\\ \Leftrightarrow\left(1+\dfrac{1}{2}\right)\log_2x=3\\ \Leftrightarrow\dfrac{3}{2}\log_2x=3\\ \Leftrightarrow\log_2x=2\\ \Leftrightarrow x=4\left(tm\right)\)

Vậy x= 4

a: \(log_49=\dfrac{log9}{log4}=\dfrac{log3^2}{log2^2}=\dfrac{2\cdot log3}{2\cdot log2}=\dfrac{log3}{log2}=\dfrac{b}{a}\)

b: \(log_612=\dfrac{log12}{log6}=\dfrac{log2^2+log3}{log2+log3}=\dfrac{2\cdot log2+log3}{log2+log3}\)

\(=\dfrac{2a+b}{a+b}\)

c: \(log_56=\dfrac{log6}{log5}=\dfrac{log\left(2\cdot3\right)}{log\left(\dfrac{10}{2}\right)}=\dfrac{log2+log3}{log10-log2}\)

\(=\dfrac{a+b}{1-a}\)

HQ
Hà Quang Minh
Giáo viên
24 tháng 8 2023

\(a,A=log_23\cdot log_34\cdot log_45\cdot log_56\cdot log_67\cdot log_78\\ =log_28\\ =log_22^3\\ =3\\ b,B=log_22\cdot log_24...log_22^n\\ =log_22\cdot log_22^2...log_22^n\\ =1\cdot2\cdot...\cdot n\\ =n!\)

HQ
Hà Quang Minh
Giáo viên
22 tháng 8 2023

\(a,\left(0,3\right)^{x-3}=1\\ \Leftrightarrow x-3=0\\ \Leftrightarrow x=3\\ b,5^{3x-2}=25\\ \Leftrightarrow3x-2=2\\ \Leftrightarrow3x=4\\ \Leftrightarrow x=\dfrac{4}{3}\\ c,9^{x-2}=243^{x+1}\\ \Leftrightarrow3^{2x-4}=3^{5x+5}\\ \Leftrightarrow2x-4=5x+5\\ \Leftrightarrow3x=-9\\ \Leftrightarrow x=-3\)

HQ
Hà Quang Minh
Giáo viên
22 tháng 8 2023

d, Điều kiện: \(x>-1;x\ne0\)

\(log_{\dfrac{1}{x}}\left(x+1\right)=-3\\ \Leftrightarrow x+1=x^3\\ x\simeq1,325\left(tm\right)\)

e, Điều kiện: \(x>\dfrac{5}{3}\)

\(log_5\left(3x-5\right)=log_5\left(2x+1\right)\\ \Leftrightarrow3x-5=2x+1\\ \Leftrightarrow x=6\left(tm\right)\)

f, Điều kiện: \(x>\dfrac{1}{2}\)

\(log_{\dfrac{1}{7}}\left(x+9\right)=log_{\dfrac{1}{7}}\left(2x-1\right)\\ \Leftrightarrow x+9=2x-1\\ \Leftrightarrow x=10\left(tm\right)\)

18 tháng 8 2023

a) \(log_69+log_64=log_636=2\)

b) \(log_52-log_550=log_5\left(2:50\right)=-2\)

c) \(log_3\sqrt{5}-\dfrac{1}{2}log_550=-1,0479\)

D
datcoder
CTVVIP
14 tháng 8 2023

a) \(\log_4\sqrt[5]{16}=\log_4\left(4^2\right)^{\dfrac{1}{5}}=\log_44^{\dfrac{2}{5}}=\dfrac{2}{5}\log_44=\dfrac{2}{5}.1=\dfrac{2}{5}\)

b) \(36^{\log_68}=\left(6^2\right)^{\log_68}=6^{2\log_68}=6^{\log_68^2}=8^2=64\)

a: \(log_4\sqrt[5]{16}=log_4\sqrt[5]{4^2}=\dfrac{2}{5}\)

b: \(36^{log_68}=6\cdot^{2\cdot log_68}=8^2=64\)

HQ
Hà Quang Minh
Giáo viên
24 tháng 8 2023

a, ĐK: \(x+1>0\Leftrightarrow x>-1\)

\(log\left(x+1\right)=2\\ \Leftrightarrow x+1=10^2\\ \Leftrightarrow x+1=100\\ \Leftrightarrow x=99\left(tm\right)\)

b, ĐK: \(\left\{{}\begin{matrix}x-3>0\\x>0\end{matrix}\right.\Rightarrow x>3\)

\(2log_4x+log_2\left(x-3\right)=2\\ \Leftrightarrow log_2x+log_2\left(x-3\right)=2\\ \Leftrightarrow log_2\left(x^2-3x\right)=2\\ \Leftrightarrow x^2-3x=4\\ \Leftrightarrow x^2-3x-4=0\\ \Leftrightarrow\left(x+1\right)\left(x-4\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=-1\left(ktm\right)\\x=4\left(tm\right)\end{matrix}\right.\)

HQ
Hà Quang Minh
Giáo viên
24 tháng 8 2023

c, ĐK: \(x>1\)

\(lnx+ln\left(x-1\right)=ln4x\\ \Leftrightarrow ln\left[x\left(x-1\right)\right]-ln4x=0\\ \Leftrightarrow ln\left(\dfrac{x-1}{4}\right)=0\\ \Leftrightarrow\dfrac{x-1}{4}=1\\ \Leftrightarrow x-1=4\\ \Leftrightarrow x=5\left(tm\right)\)

d, ĐK: \(\left\{{}\begin{matrix}x^2-3x+2>0\\2x-4>0\end{matrix}\right.\Rightarrow x>2\)

\(log_3\left(x^2-3x+2\right)=log_3\left(2x-4\right)\\ \Leftrightarrow x^2-3x+2=2x-4\\ \Leftrightarrow x^2-5x+6=0\\ \Leftrightarrow\left(x-2\right)\left(x-3\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=2\left(ktm\right)\\x=3\left(tm\right)\end{matrix}\right.\)