K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 4 2017

a) Hình a:


b)Hình b:
7 tháng 10 2020
https://i.imgur.com/LMtMUAc.png
7 tháng 10 2020
https://i.imgur.com/k9rAYZR.png
13 tháng 11 2021

a: 

x-∞1+∞
y-x+22x-12x-1

 

17 tháng 5 2017

Hàm số bậc nhất y=ax+b

Điểm \(\left(1;1\right)\) thuộc đồ thị, điểm \(\left(1;\dfrac{3}{2}\right)\) không thuộc đồ thị .

31 tháng 10 2019

bạn ơi vẽ đồ thị trên máy tính ntn thế

1 tháng 5 2021

a.\(\left\{{}\begin{matrix}4x+2y=14\\2x-2y=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}6x=18\\2x-2y=4\end{matrix}\right.\)

\(\left\{{}\begin{matrix}x=2\\4-2y=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\-2y=0\end{matrix}\right.\)

\(\left\{{}\begin{matrix}x=2\\y=0\end{matrix}\right.\)

vậy  hệ pt có ndn \(\left\{2;0\right\}\)

1 tháng 5 2021

b.\(\left\{{}\begin{matrix}2x-4y=0\\3x+2y=8\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x-4y=0\\6x+4y=16\end{matrix}\right.\)

\(\left\{{}\begin{matrix}8x=16\\2x-4y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\4-4y=0\end{matrix}\right.\)

\(\left\{{}\begin{matrix}x=2\\-4y=-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\)

vậy hệ pt có ndn \(\left\{2;1\right\}\)

a: Đặt |x-6|=a, |y+1|=b

Theo đề, ta có hệ phương trình:

\(\left\{{}\begin{matrix}2a+3b=5\\5a-4b=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=1\\b=1\end{matrix}\right.\)

=>|x-6|=1 và |y+1|=1

\(\Leftrightarrow\left\{{}\begin{matrix}x\in\left\{7;5\right\}\\y\in\left\{0;-2\right\}\end{matrix}\right.\)

b: Đặt |x+y|=a, |x-y|=b

Theo đề, ta có: \(\left\{{}\begin{matrix}2a-b=19\\3a+2b=17\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{55}{7}\\b=-\dfrac{23}{7}\left(loại\right)\end{matrix}\right.\)

=>HPTVN

c: Đặt |x+y|=a, |x-y|=b

Theo đề ta có: \(\left\{{}\begin{matrix}4a+3b=8\\3a-5b=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=2\\b=0\end{matrix}\right.\)

=>|x+y|=2 và x=y

=>|2x|=2 và x=y

=>x=y=1 hoặc x=y=-1

17 tháng 12 2022

Bài 2:

a: 2x+y=1 và x-y=2

=>3x=3 và x-y=2

=>x=1 và y=-1

b: x+2y=2 và x+2y=5

=>0x=-3 và x+2y=2

=>\(\left(x,y\right)\in\varnothing\)

c: 2x+y=3 và -2x-y=-3

=>0x=0 và 2x+y=3

=>\(\left\{{}\begin{matrix}x\in R\\y=3-2x\end{matrix}\right.\)

30 tháng 7 2021

a, \(\left\{{}\begin{matrix}\left(x-y\right)\left(x^2+y^2\right)=13\\\left(x+y\right)\left(x^2-y^2\right)=25\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2\left(x-y\right)\left(x^2+y^2\right)=26\\\left(x-y\right)\left(x+y\right)^2=25\end{matrix}\right.\)

Trừ vế theo vế \(pt\left(1\right)\) cho \(pt\left(2\right)\) ta được:

\(\Leftrightarrow\left(x-y\right)\left(x^2+y^2-2xy\right)=1\)

\(\Leftrightarrow\left(x-y\right)^3=1\)

\(\Leftrightarrow x-y=1\)

Khi đó hệ trở thành:

\(\left\{{}\begin{matrix}x^2+y^2=13\\\left(x+y\right)^2=25\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^2+y^2=13\\13+2xy=25\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^2+y^2=13\\2xy=12\end{matrix}\right.\)

Cộng vế theo vế 2 phương trình:

\(\left(x+y\right)^2=25\)

\(\Leftrightarrow x+y=\pm5\)

TH1: \(x+y=5\)

Ta có hệ: \(\left\{{}\begin{matrix}x-y=1\\x+y=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=2\end{matrix}\right.\)

TH2: \(x+y=-5\)

Ta có hệ: \(\left\{{}\begin{matrix}x-y=1\\x+y=-5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-2\\y=-3\end{matrix}\right.\)

30 tháng 7 2021

b, \(\left\{{}\begin{matrix}2x^2+x-\dfrac{1}{y}=2\\y-y^2x-2y^2=-2\end{matrix}\right.\)

ĐK: \(y\ne0\)

\(\left\{{}\begin{matrix}2x^2+x-\dfrac{1}{y}=2\\y-y^2x-2y^2=-2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x^2+x-\dfrac{1}{y}=2\\\dfrac{1}{y}-x-2=-\dfrac{2}{y^2}\end{matrix}\right.\)

Đặt \(\dfrac{1}{y}=t\), hệ trở thành:

\(\Leftrightarrow\left\{{}\begin{matrix}2x^2+x-t=2\\2t^2+t-x=2\end{matrix}\right.\)

\(\Rightarrow\left(x-t\right)\left(x+t+1\right)=0\)

\(\Leftrightarrow...\)