K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 11 2020

số chính phương chia 4 dư 0 hoặc 1 mà 171 chia 4 dư 3

nên 3^x phải chia 4 dư 1 hay x chẵn 

x=2k thì: \(\left(3^k\right)^2+171=n^2\)

đơn giản nha

12 tháng 7 2022

3^x chia 4 chưa chắc dư 1🤨🤨🤨 đâu ví dụ 3^3=27 chia 4 dư 3 đấy chứ bạn nên suy nghĩ lại đi mà người ta bảo tìm x y cơ mà bạn đã tìm ra đâu

11 tháng 3 2019

Bài 1. x^2 \(\equiv\)8 (mod 0,1). (cmdd)

T tự: y^2 \(\equiv\)8 (mod 0,1)

=> x^2+y^2 \(\equiv\)8 (mod 0,1,2)

Mà 8z+6 \(\equiv\)8 (mod 6)

=> đpcm

18 tháng 11 2017

x = 6

y = 30
 

12 tháng 7 2022

Mình nới học lớp 5 mà bố mình bắt làm bài lớp 9

28 tháng 1 2019

Mấy bài này khó :( nghĩ được bài nào làm bài đấy nhé,  bạn thông cảm

a, Dùng phương pháp kẹp 

Do \(x^2+x+1=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\forall x\)

\(\Rightarrow x^3+x^2+x+1>x^3\)

\(\Rightarrow y^3>x^3\)

\(\Rightarrow y>x\)(1)

Xét hiệu \(\left(x+2\right)^3-y^3=x^3+6x^2+12x+8-y^3\)

                                              \(=x^3+6x^2+12x+8-x^3-x^2-x-1\)

                                              \(=5x^2+11x+7\)

                                              \(=5\left(x+\frac{11}{10}\right)^2+\frac{19}{20}>0\forall x\)

\(\Rightarrow\left(x+2\right)^3>y^3\)

\(\Rightarrow x+2>y\)(2)

Từ \(\left(1\right)\&\left(2\right)\Rightarrow x< y< x+2\)

Mà \(x;y\inℤ\Rightarrow y=x+1\)

Thế vào pt ban đầu đc \(x^3+x^2+x+1=\left(x+1\right)^3\)

                            \(\Leftrightarrow x^3+x^2+x+1=x^3+3x^2+3x+1\)

                           \(\Leftrightarrow2x^2+2x=0\)

                          \(\Leftrightarrow2x\left(x+1\right)=0\)

                            \(\Leftrightarrow\orbr{\begin{cases}x=0\\x=-1\end{cases}\left(tm\right)}\)

*Với x = 0 => y= 1

*Với x = -1 => y = 0

Vậy ...

29 tháng 1 2019

Ailamfgiups mình caaub,c, d với

DD
19 tháng 7 2021

a) \(2xy-y^2-6x+4y=7\)

\(\Leftrightarrow2xy-6x-y^2+3y+y-3=4\)

\(\Leftrightarrow\left(2x-y+1\right)\left(y-3\right)=4\)

Tới đây bạn xét bảng giá trị thu được nghiệm \(\left(x,y\right)\).

b) \(x^2+y^2-x⋮xy\Rightarrow x^2+y^2-x⋮x\Rightarrow y^2⋮x\).

Đặt \(y^2=kx,\left(k\inℤ\right),d=\left(x,k\right)\).

\(x^2+\left(kx\right)^2-x⋮xy\Rightarrow x+k^2x-1⋮y\).

suy ra \(x+k^2x-1⋮d\Rightarrow1⋮d\Rightarrow d=1\).

Do đó \(kx=y^2\)mà \(\left(k,x\right)=1\)nên \(x\)là số chính phương. 

1 tháng 9 2023

Để tìm nghiệm nguyên của phương trình x(x+3) + y(y+3) = z(z+3) với x và y là số nguyên tố, ta có thể sử dụng phương pháp thử và sai hoặc sử dụng các thuật toán liệt kê các số nguyên tố và kiểm tra từng cặp giá trị (x, y). Tuy nhiên, do phương trình này là một phương trình bậc hai với hai biến, việc tìm nghiệm nguyên chính xác có thể rất khó khăn và tốn nhiều thời gian.

Một cách tiếp cận khác là sử dụng các công cụ toán học, như chương trình máy tính hoặc ngôn ngữ lập trình, để tìm nghiệm của phương trình này. Bằng cách lặp qua tất cả các giá trị nguyên tố cho x và y từ -N đến N (trong đó N là một giá trị lớn nào đó), ta có thể kiểm tra nếu tồn tại một giá trị nguyên tố z thỏa mãn phương trình. Tuy nhiên, quá trình này có thể tốn nhiều thời gian và tài nguyên tính toán.

Vì vậy, việc tìm nghiệm nguyên của phương trình này với x và y là số nguyên tố là một bài toán phức tạp và không có cách giải chính xác nhanh chóng.

1 tháng 9 2023

uhm cảm ơn bạn nhé

7 tháng 8 2015

Giúp tôi giải toán - Hỏi đáp, thảo luận về toán học - Học toán với OnlineMath

22 tháng 8 2021

Hồng Phúc CTV, Nguyễn Việt Lâm