K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét tứ giác ADHE có

\(\widehat{ADH}=\widehat{AEH}=\widehat{DAE}=90^0\)

=>ADHE là hình chữ nhật

b: ADHE là hình chữ nhật

=>HD//AE và HD=AE

Ta có: HD//AE

D\(\in\)HF

Do đó: DF//AE

Ta có; HD=AE

HD=DF

Do đó: AE=DF

Xét tứ giác AEDF có

AE//DF

AE=DF

Do đó: AEDF là hình bình hành

c: Ta có: AEDF là hình bình hành

=>AF//DE

mà A\(\in\)KF

nên KA//ED

Ta có: EH//AD

E\(\in\)KH

Do đó: KE//AD

Xét tứ giác ADEK có

AD//EK

AK//DE

Do đó: ADEK là hình bình hành

=>AK=DE

mà DE=AF(AEDF là hình bình hành)

nên AF=AK

mà K,A,F thẳng hàng

nên A là trung điểm của KF

d: Xét tứ giác DHME có

DH//ME

DE//MH

Do đó: DHME là hình bình hành

=>DH=EM

mà DH=EA

nên EM=EA

=>E là trung điểm của AM

Xét tứ giác AHMK có

E là trung điểm chung của AM và HK

=>AHMK là hình bình hành

Hình bình hành AHMK có AM\(\perp\)HK

nên AHMK là hình thoi

17 tháng 11 2023

a: ΔOAC cân tại O

mà OK là đường trung tuyến

nên OK\(\perp\)AC

Xét tứ giác OHCK có \(\widehat{OHC}+\widehat{OKC}=90^0+90^0=180^0\)

nên OHCK là tứ giác nội tiếp

=>O,H,C,K cùng thuộc 1 đường tròn

b: ΔOCD cân tại O

mà OH là đường cao

nên H là trung điểm của CD

Xét tứ giác OCBD có

H là trung điểm chung của OB và CD

=>OCBD là hình bình hành

Hình bình hành OCBD có OC=OD

nên OCBD là hình thoi

=>OC=CB=BD=DO

Xét ΔCBO có CB=CO=OB

nên ΔCBO đều

=>\(\widehat{CBA}=60^0\)

Xét ΔCAB có \(tanCBA=\dfrac{CA}{CB}\)

=>\(\dfrac{CA}{CB}=tan60=\sqrt{3}\)

=>\(CA=\sqrt{3}\cdot CB\)

Xét ΔCAB vuông tại C có CH là đường cao

nên \(\left\{{}\begin{matrix}CA^2=AH\cdot AB\\CB^2=BH\cdot BA\end{matrix}\right.\)

=>\(\dfrac{CA^2}{CB^2}=\dfrac{AH\cdot AB}{BH\cdot AB}\)

=>\(\dfrac{AH}{BH}=\left(\sqrt{3}\right)^2=3\)

=>AH=3HB

I đối xứng A qua H nên H là trung điểm của AI

Xét tứ giác ACID có

H là trung điểm chung của AI và CD

nên ACID là hình bình hành

Hình bình hành ACID có AI\(\perp\)CD

nên ACID là hình thoi