K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 12 2018

Bạn tự vẽ hình nha:

a)Xét tứ giác AIHK, có:

góc A=90 độ(gt)

góc AIH =90 độ( D,H đx qua AB)

góc AKH=90 độ(H,E đx qua AC)

=> AIHK là hình chữ nhật

b)Vì D,H đx qua AB nên AB là đường trung trực của DH

=> AD=AH (1)

Vì H,E đx qua AC nên AC là đường trung trực của HE

=> AH=AE(2)

Từ (1) và (2) => AD=AE(*)

Tam giác ADH cân tại A (AH=AD) có AB là đtt nên AB cũng là đường phân giác, đường cao, đường trung tuyến

=> góc DAH=\(2.A_2\)

Tam giác AHE cân tại A (AH=AE) có AC là đtt nên AC cũng là đường phân giác, đường cao, đường trung tuyến

=> góc HAE=\(2.A_3\)

Ta có: góc DAH +góc HAE=\(2.A_2+2.A_3=2\left(A_2+A_3\right)=2.90\text{đ}\text{ộ}=180\text{đ}\text{ộ}\)

hay góc DAE=180 độ => 3 điểm D,A,E thẳng hàng (**)

Từ (*) và (**) => D,E đx qua A (đpcm)

c) Xét tam giác AIH và tam giác AKH, có:

góc AIH= góc AKH=90 độ

AH chung

AI=HK(AIHK là hcn)

=> tam giác AIH=tam giác AKH(ch_cgv)(3)

Xét tam giác ADI và tam giác AHI, có:

\(A_1=A_2\)(AB là p/g của góc DAH)

AI là cạnh chung

góc DIA= góc HIA=90 độ

=> tam giác ADI = tam giác AHI(cgv-gnk)(4)

Chứng minh tương tự, ta được : tam giác AEK= tam giác AHK(cgv-gnk)(5)

Từ (3), (4) và (5) => tam giác AIH=AKH=AKE=AID

Ta có :

\(S_{AIHK}=AI.AH=s\)

=> \(\frac{S_{AIHK}}{2}=S_{AIH}=\frac{s}{2}\)

=> \(S_{DHE}=S_{AIH}+S_{AKH}+S_{AKE}+S_{AID}=4.S_{AIH}\)

\(=4.\frac{s}{2}=2.s\)

Vậy: diện tích \(S_{DHE}=2.s\)

Mình đã làm hưng câu c) khá dài dòng, mình nghĩ rằng nên chứng minh theo cách khác ngắn gọn hơn, bài giải câu c) là dành cho trường hợp không biết làm sao chứng minh tam giác theo cách dài dòng nên bạn nào có cách giải câu c) hay hơn không? mình nghĩ là có các bạn cùng thảo luận nha!

 Chúc bạn học thật giỏi nha!!!!!!!!

14 tháng 3 2020

A B H C D M

a, xét tứ giác DAHB có : M là trung điểm của AB (Gt)

H đối xứng với D qua M (gt) => M là trung điểm của HD (đn)

=>DAHB là hình bình hành (dh)

có : ^AHB = 90 do AH _|_ BC (gt)

=> DAHB là hình chữ nhật (dh(

b, DAHB là hình chữ nhật

để DAHB là hình vuông

<=> AH = BH  (dh)

<=> tam giác AHB cân tại H (đn)

có ^AHB = 90 (câu a)

<=> tam giác AHB vuông cân tại H 

<=> ^ABH = 45 

mà tam giác ABC cân tại A (gt)

<=> tam giác ABC vuông cân tại A

a: Xét tứ giác ADHE có

\(\widehat{ADH}=\widehat{AEH}=\widehat{DAE}=90^0\)

=>ADHE là hình chữ nhật

b: ADHE là hình chữ nhật

=>HD//AE và HD=AE

Ta có: HD//AE

D\(\in\)HF

Do đó: DF//AE

Ta có; HD=AE

HD=DF

Do đó: AE=DF

Xét tứ giác AEDF có

AE//DF

AE=DF

Do đó: AEDF là hình bình hành

c: Ta có: AEDF là hình bình hành

=>AF//DE

mà A\(\in\)KF

nên KA//ED

Ta có: EH//AD

E\(\in\)KH

Do đó: KE//AD

Xét tứ giác ADEK có

AD//EK

AK//DE

Do đó: ADEK là hình bình hành

=>AK=DE

mà DE=AF(AEDF là hình bình hành)

nên AF=AK

mà K,A,F thẳng hàng

nên A là trung điểm của KF

d: Xét tứ giác DHME có

DH//ME

DE//MH

Do đó: DHME là hình bình hành

=>DH=EM

mà DH=EA

nên EM=EA

=>E là trung điểm của AM

Xét tứ giác AHMK có

E là trung điểm chung của AM và HK

=>AHMK là hình bình hành

Hình bình hành AHMK có AM\(\perp\)HK

nên AHMK là hình thoi

a: Xét tứ giác AEBM có

D là trung điểm của AB

D là trung điểm của EM

Do đó: AEBM là hình bình hành

mà MA=MB

nên AEBM là hình thoi