tìm gtnn của biểu thức A=|x-1|+|x+2012|
Giúp em với sắp thi rùi ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P=\sqrt[]{x}+\dfrac{3}{\sqrt[]{x}-1}\left(x>1\right)\)
\(P=\sqrt[]{x}-1+\dfrac{3}{\sqrt[]{x}-1}+1\)
Áp dụng bất đẳng thức Cauchy cho 2 số \(\sqrt[]{x}-1;\dfrac{3}{\sqrt[]{x}-1}\) ta được :
\(\sqrt[]{x}-1+\dfrac{3}{\sqrt[]{x}-1}\ge2\sqrt[]{\sqrt[]{x}-1.\dfrac{3}{\sqrt[]{x}-1}}\)
\(\Rightarrow\sqrt[]{x}-1+\dfrac{3}{\sqrt[]{x}-1}\ge2\sqrt[]{3}\)
\(\Rightarrow P=\sqrt[]{x}-1+\dfrac{3}{\sqrt[]{x}-1}+1\ge2\sqrt[]{3}+1\)
\(\Rightarrow Min\left(P\right)=2\sqrt[]{3}+1\)
\(A=\frac{1}{3}+3\left|x-\frac{1}{3}\right|\)
Áp dụng KT \(\left|x\right|\ge0\)\(\forall\)\(x\)
BG :
Ta thấy : \(\left|x-\frac{1}{3}\right|\ge0\)\(\forall\)\(x\); \(3\ge0\)
nên : \(3\left|x-\frac{1}{3}\right|\ge0\)\(\forall\)\(x\)
\(\Rightarrow\)\(\frac{1}{3}+3\left|x-\frac{1}{3}\right|\ge\frac{1}{3}+0\)\(\forall\)\(x\)
hay \(A\ge\frac{1}{3}\)\(\forall\)\(x\)
Dấu "=" xảy ra khi :
\(\Leftrightarrow\)\(\left|x-\frac{1}{3}\right|=0\)
\(\Leftrightarrow\)\(x-\frac{1}{3}=0\)
\(\Leftrightarrow\)\(x=\frac{1}{3}\)
Vậy GTNN của \(A=\frac{1}{3}\)đạt được khi \(x=\frac{1}{3}\)
A=1/3+3x[x-1/3]
=>1/3+3x[x-1/3]=0
3x[x-1/3]=1/3
x-1/3=1/3:3
x=1/9+1/3
x=4/9
đk : x>= 1
Q = \(\sqrt{x-1}-12\)
với \(x\ge1\Leftrightarrow x-1\ge0\Leftrightarrow\sqrt{x-1}\ge0\Leftrightarrow\sqrt{x-1}-12\ge12\)
Dấu ''='' xảy ra khi x = 1
\(\text{ C = 3 - | x + 2 |}\)
\(\left|x+2\right|\ge0\)
\(\Rightarrow3-\left|x+2\right|\ge3-0\)
\(\Rightarrow3-\left|x+2\right|\ge3\)
\(\Rightarrow C\ge3\)
\(\Rightarrow C=3\Leftrightarrow\left|x+2\right|=0\)
\(\Rightarrow x+2=0\)
\(\Rightarrow x=0-2\)
\(\Rightarrow x=-2\)
Vậy \(\text{Max C = 3 }\Leftrightarrow x=-2\)
\(!x+2!\ge0\Leftrightarrow3-!x+2!\le3\)
"=" xảy ra khi x=-2
\(!3x-15!\ge0\)
\(!3x-15!+8\ge8\)
dấu = xảy ra khi x=5
A = | x - 1 | + | x + 2012 |
= | 1 - x | + | x + 2012 |
≥ | 1 - x + x + 2012 | = 2013
Dấu "=" xảy ra khi ab ≥ 0
=> ( 1 - x )( x + 2012 ) ≥ 0
=> -2012 ≤ x ≤ 1
=> MinA = 2013 <=> -2012 ≤ x ≤ 1
A=[x-1]+[x+2012] lớn hơn hoặc bằng x-1
Vậy x = 1