K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 4 2017

Ta có:

\(A=\dfrac{3n+2}{n-1}=\dfrac{3\left(n-1\right)+5}{n-1}=\dfrac{3\left(n-1\right)}{n-1}+\dfrac{5}{n-1}\)

Để \(A\in Z\) thì \(5⋮n-1\) hay \(n-1\in U\left(5\right)=\left\{\pm1;\pm5\right\}\)

Lập bảng giá trị:

\(n-1\) \(1\) \(-1\) \(5\) \(-5\)
\(n\) \(2\) \(0\) \(6\) \(-4\)

9 tháng 4 2017

A=\(\dfrac{3.n+2}{n-1}=\dfrac{3\left(n-1\right)+5}{n-1}=\dfrac{3\left(n-1\right)}{n-1}+\dfrac{5}{n-1}=3+\dfrac{5}{n-1}\)

Để A nguyên thì 5\(⋮\)n-1 hay n-1\(\in\)Ư(5)

Ta có bảng sau:

n-1 1 5 -1 -5
n 2 6 0 -4

Vậy n\(\in\){2;6;0;-4}

21 tháng 3 2017

Để 3n+2/n-1 có giá trị là số nguyên

=>3n+2 chia hết cho n-1

=>(3n+2)-(n-1) chia hết cho n-1

=>(3n+2)-3(n-1) chia hết cho n-1

=>(3n+2)-(3n-1) chia hết cho n-1

=> 3n+2 - 3n -1 chia hết cho n-1

=>1 chia hết cho n-1

=> n=0;2

hok tốt nha

21 tháng 3 2017

=>3n+2chia hết cho n-1

n-1chia hết cho n-1

3n-1chia hết cho n-1

3n+2-3n-1 chia hết cho n-1

(3n-3n)+(2-1) chia hết cho n-1

0+1 chia hết cho n-1

1 chia hết cho n-1

=>n-1 thuộc Ư(1)

mà Ư(1)={-1;+1}

Lập bảng

n-1-1+1
n02
đánh giáthuộc Zthuộc Z

=>n={0;2} để n-1 thỏa mãn điều kiện

17 tháng 5 2018

a) ta có: \(B=\frac{n}{n-3}=\frac{n-3+3}{n-3}=\frac{n-3}{n-3}+\frac{3}{n-3}\)

Để B là số nguyên

\(\Rightarrow\frac{3}{n-3}\in z\)

\(\Rightarrow3⋮n-3\Rightarrow n-3\inƯ_{\left(3\right)}=\left(3;-3;1;-1\right)\)

nếu n -3 = 3 => n= 6 (TM)

       n- 3 = - 3 => n = 0 (TM)

      n -3 = 1 => n = 4 (TM)

    n -3 = -1 => n = 2 (TM)

KL: \(n\in\left(6;0;4;2\right)\)

b) đề như z pải ko bn!

ta có: \(C=\frac{3n+5}{n+7}=\frac{3n+21-16}{n+7}=\frac{3.\left(n+7\right)-16}{n+7}=\frac{3.\left(n+7\right)}{n+7}-\frac{16}{n+7}=3-\frac{16}{n+7}\)

Để C là số nguyên

\(\Rightarrow\frac{16}{n+7}\in z\)

\(\Rightarrow16⋮n+7\Rightarrow n+7\inƯ_{\left(16\right)}=\left(16;-16;8;-8;4;-4;2;-2;1;-1\right)\)

rùi bn  thay giá trị của n +7 vào để tìm n nhé ! ( thay như phần a đó)

25 tháng 9 2017

Ta có: 2n2 – n + 2 : (2n + 1)

Ta có: n ∈ Z và 2n2 – n + 2 chia hết cho 2n +1 thì 2n + 1 là ước của 3. Ước của 3 là \(\left\{-3;-1;1;3\right\}\)
Khi 2n + 1 = 1 ⇔2n = 0 ⇔ n = 0
Khi 2n + 1 = -1 ⇔ 2n = -2 ⇔ n = -1
Khi 2n + 1 = 3 ⇔ 2n = 2 ⇔ n – 1
Khi 2n + 1 = -3 ⇔ 2n = -4 ⇔ n = -2
Vậy, n = 0 hoặc n = – 1 hoặc n = 1 hoặc n = -2.

25 tháng 9 2017

Ta có: \(2n^2-n+2=\)\(2n^2+n-2n-1+3\)\(=n\left(2n+1\right)-\left(2n+1\right)+3\)

Để \(2n^2-n+2⋮2n+1\Rightarrow2n+1\inƯ\left(3\right)\)

Ta có bảng sau:

\(2n+1\) 1 -1 3 -3
\(2n\) 0 -1 2 -4
\(n\) 0 \(-0,5\)(loại) 1 -2

17 tháng 4 2016

n=0;-2

17 tháng 4 2016

dễ :D

6n-3/3n+1=6n+2-5/3n+1=2(3n+1)-5/3n+1=2(3n+1)/3n+1+5/3n+1=2+5/3n+1=>3n+1 thuộc Ư(5) mà Ư(5)={1;-1;5;-5}

=> n=0;-2/3( loại) ;4/3( loại); -2