K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 10 2020

Đặt \(A=\frac{x}{y^4+2}+\frac{y}{z^42}+\frac{z}{x^4+2}\ge1\)

\(A=\frac{y^4}{x+2}+\frac{z^4}{y+2}+\frac{x^4}{z+2}\ge1\)

Còn lại thì bạn tính tổng nha! Lớn hơn hoặc bằng 1 là được :))

AH
Akai Haruma
Giáo viên
4 tháng 3 2017

Lời giải:

Do \(xyz=8\) nên tồn tại các số dương \(a,b,c\) sao cho \((x,y,z)=\left(\frac{2a^2}{bc},\frac{2b^2}{ac},\frac{2c^2}{ab}\right)\)

Khi đó , BĐT cần CM tương đương với:

\(P=\frac{a^4}{a^4+a^2bc+b^2c^2}+\frac{b^4}{b^4+b^2ac+a^2c^2}+\frac{c^4}{c^4+c^2ab+a^2b^2}\geq 1\)

Áp dụng BĐT Cauchy-Schwarz:

\(P\geq \frac{(a^2+b^2+c^2)^2}{a^4+b^4+c^4+abc(a+b+c)+a^2b^2+b^2c^2+c^2a^2}\) \((1)\)

Áp dụng bất đẳng thức AM-GM:

\(a^2b^2+b^2c^2\geq 2ab^2c\). Tương tự với các cặp biểu thức còn lại và cộng theo vế suy ra \(a^2b^2+b^2c^2+c^2a^2\geq abc(a+b+c)\)

\(\Rightarrow abc(a+b+c)+a^2b^2+b^2c^2+c^2a^2\leq 2(a^2b^2+b^2c^2+c^2a^2)\)

\(\Rightarrow a^4+b^4+c^4+abc(a+b+c)+a^2b^2+b^2c^2+c^2a^2\leq (a^2+b^2+c^2)^2\) \((2)\)

Từ \((1),(2)\Rightarrow P\geq 1\) (đpcm)

Dấu bằng xảy ra khi \(x=y=z=2\)

22 tháng 10 2016

dia chi ban vua truy cap khong tim thay

22 tháng 10 2016

Vì xyz = 1 nên ta có thể đặt \(x=\frac{a^2}{bc};y=\frac{b^2}{ac};z=\frac{c^2}{ab}\left(a,b,c>0,a^2\ne bc,b^2\ne ac,c^2\ne ab\right)\)

Khi đó bất đẳng thức tương đương với

\(\frac{a^4}{\left(a^2-bc\right)^2}+\frac{b^4}{\left(b^2-ac\right)^2}+\frac{c^4}{\left(c^2-ab\right)^2}\ge1\)

Mà ta có

\(\frac{a^4}{\left(a^2-bc\right)^2}+\frac{b^4}{\left(b^2-ac\right)^2}+\frac{c^4}{\left(c^2-ab\right)^2}\ge\frac{\left(a^2+b^2+c^2\right)^2}{\left(a^2-bc\right)^2+\left(b^2-ab\right)^2+\left(c^2-ab\right)^2}\)

Ta cần chứng minh

\(\frac{\left(a^2+b^2+c^2\right)^2}{\left(a^2-bc\right)^2+\left(b^2-ab\right)^2+\left(c^2-ab\right)^2}\ge1\)

\(\Leftrightarrow\left(a^2+b^2+c^2\right)^2\ge\left(a^2-bc\right)^2+\left(b^2-ab\right)^2+\left(c^2-ab\right)^2\)

\(\Leftrightarrow\left(ab+bc+ca\right)^2\ge0\left(đúng\right)\)

Vậy ta có điều phải chứng minh

31 tháng 12 2015

là câu hỏi tương tự nha bạn

18 tháng 9 2017

Áp dụng bđt AM - GM ta có : 

\(\frac{x^3}{y^2}+x\ge2\sqrt{\frac{x^3}{y^2}.x}=\frac{2x^2}{y}\)

\(\frac{y^3}{z^2}+y\ge2\sqrt{\frac{y^3}{z^2}.y}=\frac{2y^2}{z}\)

\(\frac{z^3}{x^2}+z\ge2\sqrt{\frac{z^3}{x^2}.z}=\frac{2z^2}{x}\)

Cộng vế với vế ta được :

\(\frac{x^3}{y^2}+\frac{y^3}{z^2}+\frac{z^3}{x^2}+x+y+z\ge2\left(\frac{x^2}{y}+\frac{y^2}{z}+\frac{x^2}{z}\right)\)

Ta lại có : \(\left(\frac{x^2}{y}+\frac{y^2}{z}+\frac{x^2}{z}\right)\left(x+y+z\right)\ge\left(x+y+z\right)^2\)(bunhiacopxki)

\(\Rightarrow\frac{x^2}{y}+\frac{y^2}{z}+\frac{x^2}{z}\ge\frac{\left(x+y+z\right)^2}{x+y+z}=x+y+z\)

\(\Rightarrow\frac{x^3}{y^2}+\frac{y^3}{z^2}+\frac{z^3}{x^2}+x+y+z\ge2\left(\frac{x^2}{y}+\frac{y^2}{z}+\frac{x^2}{z}\right)\ge2\left(x+y+z\right)\)

\(\Rightarrow\frac{x^3}{y^2}+\frac{y^3}{z^2}+\frac{z^3}{x^2}\ge x+y+z\ge1\)(đpcm)

2 tháng 1 2017

dvfvgf

14 tháng 8 2019

Bạn tham khảo tại đây:

Câu hỏi của Tôi Là Ai - Toán lớp 8 - Học toán với OnlineMath

21 tháng 10 2016

Do xyz = 1, ta có thể đặt \(a=\frac{x}{x-1},\)\(b=\frac{y}{y-1},\)\(c=\frac{z}{z-1}\)

Ta có \(abc=\frac{x}{x-1}.\frac{y}{y-1}.\frac{z}{z-1}=\frac{xyz}{\left(x-1\right)\left(y-1\right)\left(z-1\right)}=\frac{1}{\left(x-1\right)\left(y-1\right)\left(z-1\right)}\) (1)

Mặt khác \(\left(a-1\right)\left(b-1\right)\left(c-1\right)=\left(\frac{x}{x-1}-1\right).\left(\frac{y}{y-1}-1\right).\left(\frac{z}{z-1}-1\right)\)

            \(=\frac{x-x+1}{x-1}.\frac{y-y+1}{y-1}.\frac{z-z+1}{z-1}=\frac{1}{\left(x-1\right)\left(y-1\right)\left(z-1\right)}\)(2)

So sánh (1) và (2) ta có \(abc=\left(a-1\right)\left(b-1\right)\left(c-1\right)\)\(\Leftrightarrow\)\(abc=abc-ab-bc-ca+a+b+c-1\)\(\Leftrightarrow\)\(ab+bc+ca-a-b-c+1=0\) (3)

Mà với mọi a, b, c ta luôn có \(\left(a+b+c-1\right)^2\ge0\)

Hay \(a^2+b^2+c^2+2\left(ab+bc+ca-a-b-c+1\right)-1\ge0\) (4)

Thay (3) vào (4) ta được \(a^2+b^2+c^2\ge1\) hay \(\frac{x^2}{\left(x-1\right)^2}+\frac{y^2}{\left(y-1\right)^2}+\frac{z^2}{\left(z-1\right)^2}\ge1\)

22 tháng 10 2016

bạn viết gì mà mik chẳng hiểu gì cả