cho a,b,c là 3 số thực thỏa mãn a+b+c=3. tìm giá trị nhỏ nhất của biểu thức Q=\(\frac{a^3+b^3}{2ab}\)+\(\frac{b^3+c^3}{2bc}\)+\(\frac{c^3+a^3}{2ca}\)
tui cần gấp lắm, ai làm nhanh tui ticks cho!!!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(a^3+b^3\ge ab\left(a+b\right)\)
\(\Leftrightarrow\left(a-b\right)^2\left(a+b\right)\ge0\) ( luôn đúng )
Áp dụng:
\(G=\frac{a^3+b^3}{2ab}+\frac{b^3+c^3}{2bc}+\frac{c^3+a^3}{2ca}\)
\(\ge\frac{ab\left(a+b\right)}{2ab}+\frac{bc\left(b+c\right)}{2bc}+\frac{ca\left(c+a\right)}{2ca}\)
\(=\frac{a+b}{2}+\frac{b+c}{2}+\frac{c+a}{2}\)
\(=a+b+c=2019\)
Dấu "=" xảy ra tại a=b=c=673
Sử dụng giả thiết a + b + c = 3, ta được: \(\frac{a^3}{3a-ab-ca+2bc}=\frac{a^3}{\left(a+b+c\right)a-ab-ca+2bc}\)\(=\frac{a^3}{a^2+2bc}\)
Tương tự ta có \(\frac{b^3}{3b-bc-ab+2ca}=\frac{b^3}{b^2+2ca}\); \(\frac{c^3}{3c-ca-bc+2ab}=\frac{c^3}{c^2+2ab}\)
Khi đó thì \(P=\frac{a^3}{a^2+2bc}+\frac{b^3}{b^2+2ca}+\frac{c^3}{c^2+2ab}+3abc\)\(=\left(a+b+c\right)-\frac{2abc}{a^2+2bc}-\frac{2abc}{b^2+2ca}-\frac{2abc}{c^2+2ab}+3abc\)\(=3+abc\left[3-2\left(\frac{1}{a^2+2bc}+\frac{1}{b^2+2ca}+\frac{1}{c^2+2ab}\right)\right]\)\(\le3+abc\left[3-2.\frac{9}{a^2+b^2+c^2+2\left(ab+bc+ca\right)}\right]\)(Theo BĐT Bunyakovsky dạng phân thức)\(=3+abc\left[3-2.\frac{9}{\left(a+b+c\right)^2}\right]\le3+\left(\frac{a+b+c}{3}\right)^3=4\)
Đẳng thức xảy ra khi a = b = c = 1
Câu hỏi của Phạm Trần Minh Trí - Toán lớp 9 - Học toán với OnlineMath
Em tham khảo.
Áp dụng BĐT AM-GM: \(\frac{a^3}{\left(b+c\right)^2}+\frac{b+c}{8}+\frac{b+c}{8}\ge\frac{3}{4}a\)
Suy ra \(\frac{a^3}{\left(b+c\right)^2}\ge\frac{3a-b-c}{4}\)
Tương tự các BĐT còn lại và cộng theo vế ta được \(VT\ge\frac{a+b+c}{4}=\frac{3}{2}\)
Đẳng thức xảy ra khi a = b= c = 2
Ta có:
\(Q=\frac{a^3+b^3}{2ab}+\frac{b^3+c^3}{2bc}+\frac{c^3+a^3}{2ca}\)
\(Q=\frac{\left(a+b\right)\left(a^2-ab+b^2\right)}{2ab}+\frac{\left(b+c\right)\left(b^2-bc+c^2\right)}{2bc}+\frac{\left(c+a\right)\left(c^2-ca+a^2\right)}{2ca}\)
\(Q=\frac{\left(a+b\right)\left[\left(a^2+b^2\right)-ab\right]}{2ab}+\frac{\left(b+c\right)\left[\left(b^2+c^2\right)-bc\right]}{2bc}+\frac{\left(c+a\right)\left[\left(c^2+a^2\right)-ca\right]}{2ca}\)
\(\ge\frac{\left(a+b\right)\left(2ab-ab\right)}{2ab}+\frac{\left(b+c\right)\left(2bc-bc\right)}{bc}+\frac{\left(c+a\right)\left(2ca-ca\right)}{ca}\) \(\left(Cauchy\right)\)
\(=\frac{a+b}{2}+\frac{b+c}{2}+\frac{c+a}{2}=a+b+c=3\)
Dấu "=" xảy ra khi: \(a=b=c=1\)