Cho hai đường thẳng \(\hept{\begin{cases}\left(d_1\right):y=\left(m^2+3\right)x+m^2+1\\\left(d_2\right):y=-\frac{1}{m^2+3}+\frac{4m^2+13}{m^2+3}\end{cases}}\)
(với m là tham số). Chứng minh rằng với mọi giá trị của m thì (d1) và (d2) luôn cắt nhau tại một điểm nằm trên một đường tròn cố định.